0000000000382975
AUTHOR
Chris Peters
Applications to Algebraic Cycles: Nori's Theorem
Deligne cohomology is a tool that makes it possible to unify the study of cycles through an object that classifies extensions of ( p , p )-cycles by points in the p -th intermediate Jacobian (which is the target of the Abel–Jacobi map on cycles of codimension p ). This is treated in Section 10.1 with applications to normal functions. Before giving the proof of Nori's theorem in Section 10.6, we need some results from mixed Hodge theory. These are proven in Section 10.2 where we also state different variants of the theorem. Sections 10.3 and 10.4 treat a localto- global principle and an extension of the method of Jacobian representations of cohomology which are both essential for the proof. …
Normal Functions and Their Applications
Abelian varieties and theta functions associated to compact Riemannian manifolds; constructions inspired by superstring theory
We look into a construction of principal abelian varieties attached to certain spin manifolds, due to Witten and Moore-Witten around 2000 and try to place it in a broader framework. This is related to Weil intermediate Jacobians but it also suggests to associate abelian varieties to polarized even weight Hodge structures. The latter construction can also be explained in terms of algebraic groups which might be useful from the point of view of Tannakian categories. The constructions depend on moduli much as in Teichm\"uller theory although the period maps in general are only real analytic. One of the nice features is how the index for certain differential operators canonically associated to …