Structure of equilibrium states on self-affine sets and strict monotonicity of affinity dimension
A fundamental problem in the dimension theory of self-affine sets is the construction of high- dimensional measures which yield sharp lower bounds for the Hausdorff dimension of the set. A natural strategy for the construction of such high-dimensional measures is to investigate measures of maximal Lyapunov dimension; these measures can be alternatively interpreted as equilibrium states of the singular value function introduced by Falconer. Whilst the existence of these equilibrium states has been well-known for some years their structure has remained elusive, particularly in dimensions higher than two. In this article we give a complete description of the equilibrium states of the singular …