0000000000383085
AUTHOR
Benjamin Jäger
Lattice calculations of the leading hadronic contribution to g-2
We report on our ongoing project to calculate the leading hadronic contribution to the anomalous magnetic moment of the muon aHLO μ using two dynamical flavours of non-perturbatively O(a) improved Wilson fermions. In this study, we changed the vacuum polarisation tensor to a combination of local and point-split currents which significantly reduces the numerical effort. Partially twisted boundary conditions allow us to improve the momentum resolution of the vacuum polarisation tensor and therefore the determination of the leading hadronic contribution to (g− 2)μ . We also extended the range of ensembles to include a pion mass below 200MeV which allows us to check the non-trivial chiral behav…
Charge transport and vector meson dissociation across the thermal phase transition in lattice QCD with two light quark flavors
We compute and analyze correlation functions in the isovector vector channel at vanishing spatial momentum across the deconfinement phase transition in lattice QCD. The simulations are carried out at temperatures $T/T_c=0.156, 0.8, 1.0, 1.25$ and $1.67$ with $T_c\simeq203$MeV for two flavors of Wilson-Clover fermions with a zero-temperature pion mass of $\simeq270$MeV. Exploiting exact sum rules and applying a phenomenologically motivated ansatz allows us to determine the spectral function $\rho(\omega,T)$ via a fit to the lattice correlation function data. From these results we estimate the electrical conductivity across the deconfinement phase transition via a Kubo formula and find eviden…
Nucleon axial charge in lattice QCD with controlled errors
We report on our calculation of the nucleon axial charge ${g}_{\mathrm{A}}$ in QCD with two flavors of dynamical quarks. A detailed investigation of systematic errors is performed, with a particular focus on contributions from excited states to three-point correlation functions. The use of summed operator insertions allows for a much better control over such contamination. After performing a chiral extrapolation to the physical pion mass, we find ${g}_{\mathrm{A}}=1.223\ifmmode\pm\else\textpm\fi{}0.063(\mathrm{stat}{)}_{\ensuremath{-}0.060}^{+0.035}(\mathrm{syst})$, in good agreement with the experimental value.
Nucleon electromagnetic form factors in two-flavor QCD
We present results for the nucleon electromagnetic form factors, including the momentum transfer dependence and derived quantities (charge radii and magnetic moment). The analysis is performed using O(a) improved Wilson fermions in Nf=2 QCD measured on the CLS ensembles. Particular focus is placed on a systematic evaluation of the influence of excited states in three-point correlation functions, which lead to a biased evaluation, if not accounted for correctly. We argue that the use of summed operator insertions and fit ans\"atze including excited states allow us to suppress and control this effect. We employ a novel method to perform joint chiral and continuum extrapolations, by fitting th…
A new representation of the Adler function for lattice QCD
We address several aspects of lattice QCD calculations of the hadronic vacuum polarization and the associated Adler function. We implement a representation derived previously which allows one to access these phenomenologically important functions for a continuous set of virtualities, irrespective of the flavor structure of the current. Secondly we present a theoretical analysis of the finite-size effects on our particular representation of the Adler function, based on the operator product expansion at large momenta and on the spectral representation of the Euclidean correlator at small momenta. Finally, an analysis of the flavor structure of the electromagnetic current correlator is perform…
Adler function and hadronic vacuum polarization from lattice vector correlators
We study a representation of the hadronic vacuum polarization based on the time-momentum representation of the vector correlator. This representation suggests a way to compute the hadronic vacuum polarization and the associated Adler function for any value of virtuality, irrespective of the flavor structure of the current. We present results on both of these phenomenologically important functions, derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort.
Hadronic contribution to the lepton anomalous magnetic moment and pion form factor in lattice QCD
Abstract The Mainz lattice QCD group is currently carrying out simulations of lattice QCD with the aim of making predictions for a wide range of phenomenologically relevant Standard Model properties. Here we present progress in understanding and controlling systematic effects in the computation of the pion vector form factor and the leading hadronic contribution to the lepton anomalous magnetic moment.
A lattice calculation of the hadronic vacuum polarization contribution to (g - 2)μ
We present results of calculations of the hadronic vacuum polarisation contribution to the muon anomalous magnetic moment. Specifically, we focus on controlling the infrared regime of the vacuum polarisation function. Our results are corrected for finite-size effects by combining the Gounaris-Sakurai parameterisation of the timelike pion form factor with the Lüscher formalism. The impact of quark-disconnected diagrams and the precision of the scale determination is discussed and included in our final result in two-flavour QCD, which carries an overall uncertainty of 6%. We present preliminary results computed on ensembles with Nf = 2 + 1 dynamical flavours and discuss how the long-distance …
Anomalous magnetic moment of the muon: A hybrid approach
A new QCD sum rule determination of the leading order hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon, $a_{\mu}^{\rm hvp}$, is proposed. This approach combines data on $e^{+}e^{-}$ annihilation into hadrons, perturbative QCD and lattice QCD results for the first derivative of the electromagnetic current correlator at zero momentum transfer, $\Pi_{\rm EM}^\prime(0)$. The idea is based on the observation that, in the relevant kinematic domain, the integration kernel $K(s)$, entering the formula relating $a_{\mu}^{\rm hvp}$ to $e^{+}e^{-}$ annihilation data, behaves like $1/s$ times a very smooth function of $s$, the squared energy. We find an expression …
The leading hadronic contribution to (g-2) of the muon: The chiral behavior using the mixed representation method
We extend our analysis of the leading hadronic contribution to the anomalous magnetic moment of the muon using the mixed representation method to study its chiral behavior. We present results derived from local-conserved two-point lattice vector correlation functions, computed on a subset of light two-flavor ensembles made available to us through the CLS effort with pion masses as low as 190 MeV. The data is analyzed also using the more standard four-momentum method. Both methods are systematically compared as the calculations approach the physical point.