0000000000383198
AUTHOR
Andrei V. Palii
ChemInform Abstract: Magnetic Exchange Between Metal Ions with Unquenched Orbital Angular Momenta: Basic Concepts and Relevance to Molecular Magnetism
This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg–Dirac–van Vleck model) becomes…
High‐nuclearity mixed‐valence magnetic clusters : A general solution of the double exchange problem
We report here a general solution of the double‐exchange problem in the high‐nuclearity mixed valence systems containing arbitrary number P of the electrons delocalized over the network of N (P<N) localized spins. The developed approach is based on the successive (chainlike) spin‐coupling scheme and takes full advantage from the quantum angular momentum theory. In the framework of this approach the closed‐form analytical expressions are deduced for the matrix elements of the double exchange interaction, two‐electron transfer, and three‐center interaction that can be referred to as the potential exchange transfer. For the arbitrary nuclearity mixed‐valence systems the matrix elements of all …
Beyond the spin model: exchange coupling in molecular magnets with unquenched orbital angular momenta.
In this critical review we review the problem of exchange interactions in polynuclear metal complexes involving orbitally degenerate metal ions. The key feature of these systems is that, in general, they carry an unquenched orbital angular momentum that manifests itself in all their magnetic properties. Thus, interest in degenerate systems involves fundamental problems related to basic models in magnetism. In particular, the conventional Heisenberg-Dirac-Van Vleck model becomes inapplicable even as an approximation. In the first part we attempt to answer two key questions, namely which theoretical tools are to be used in the case of degeneracy, and how these tools can be employed. We demons…
Magnetic Exchange between Orbitally Degenerate Ions: A New Development for the Effective Hamiltonian
A new approach to the problem of the kinetic exchange for orbitally degenerate ions is developed. The constituent multielectron metal ions are assumed to be octahedrally coordinated, and strong crystal field scheme is employed, making it possible to take full advantage from the symmetry properties of the fermionic operators and collective electronic states. In the framework of the microscopic approach, the highly anisotropic effective Hamiltonian of the kinetic exchange is constructed in terms of spin operators and standard orbital operators (matrices of the unit cubic irreducible tensors). As distinguished from previous considerations, the effective Hamiltonian is derived for a most genera…
Novel chiral three-dimensional iron(III) compound exhibiting magnetic ordering at T(c) = 40 K.
The preparation and crystal structure determination of the iron(III) compound of formula [(NH(4))(2)[Fe(2)O(ox)(2)Cl(2)].2H(2)O](n) (1) (ox = oxalate dianion) are reported here. Complex 1 crystallizes in the orthorhombic system, space group Fdd2, with a = 14.956(7) A, b = 23.671(9) A, c = 9.026(4) A, and Z = 8. The structure of complex 1 consists of the chiral anionic three-dimensional network [Fe(2)O(ox)(2)Cl(2)](2-) where the iron(III) ions are connected by single oxo and bisbidentate oxalato groups. The metal-metal separations through these bridging ligands are 3.384(2) and 5.496(2) A, respectively. Ammonium cations and crystallization water molecules are located in the helical pseudohex…
Magnetic exchange between metal ions with unquenched orbital angular momenta: basic concepts and relevance to molecular magnetism
This review article is a first attempt to give a systematic and comprehensive description (in the framework of the unified theoretical approach) of the exchange interactions in polynuclear systems based on orbitally degenerate metal ions in the context of their relevance to the modern molecular magnetism. Interest in these systems is related to the fundamental problems of magnetism and at the same time steered by a number of impressive potential applications of molecular magnets, like high-density memory storage units, nanoscale qubits, spintronics and photoswitchable devices. In the presence of orbital degeneracy, the conventional spin Hamiltonian (Heisenberg–Dirac–van Vleck model) becomes…
Role of Orbital Degeneracy in the Single Molecule Magnet Behavior of a Mononuclear High-Spin Fe(II) Complex
To explain the single-molecule magnet behavior of the mononuclear complex [(tpaMes)Fe](-) we have developed a model that takes into account the trigonal ligand field splitting of the atomic (5)D term of the Fe(II) ion, and the spin-orbital splitting and mixing of the ligand field terms. The ground ligand field term is shown to be the orbital doublet (5)E possessing an unquenched orbital angular momentum. We demonstrate that the splitting of this term cannot be described by the conventional zero-field splitting Hamiltonian proving thus the irrelevance of the spin-Hamiltonian formalism in the present case. The first-order orbital angular momentum is shown to lead to the strong magnetic anisot…
Orbitally dependent kinetic exchange in cobalt(II) pairs: origin of the magnetic anisotropy
Abstract A comprehensive theoretical study of the magnetic exchange between Co 2+ ions is reported. Using the microscopic background we deduce the general Hamiltonian for a corner-shared bioctahedral system involving kinetic exchange, spin–orbit coupling and low-symmetry local crystal field. This Hamiltonian acting within orbitally degenerate ground manifold 4 ( T 1g ) A ⊗ 4 ( T 1g ) B of the cobalt pair is expressed in terms of orbital and spin operators. We elucidate the major electronic factors controlling the exchange anisotropy in the Co(II) pairs. The degree of the magnetic anisotropy is shown to depend on the strength of the cubic crystal field and on the relative efficiency of two k…