0000000000383311
AUTHOR
J. Kaupužs
FINITE-SIZE CORRECTIONS TO CORRELATION FUNCTION AND SUSCEPTIBILITY IN 2D ISING MODEL
Transfer matrix calculations of the critical two-point correlation function in 2D Ising model on a finite-size [Formula: see text] lattice with periodic boundaries along 〈11〉 direction are extended to L = 21. A refined analysis of the correlation function in 〈10〉 crystallographic direction at the distance r = L indicates the existence of a nontrivial finite-size correction of a very small amplitude with correction-to-scaling exponent ω < 2 in agreement with our foregoing study for L ≤ 20. Here we provide an additional evidence and show that amplitude a of the multiplicative correction term 1 + aL-ωis about -3.5·10-8if ω = 1/4 (the expected value). We calculate also the susceptibility for…
Power law singularities inn-vector models
Power law singularities and critical exponents in n-vector models are considered within a theoretical approach called GFD (grouping of Feynman diagrams) theory. It is discussed how possible values of the critical exponents can be related to specific n-vector models in this approach. A good agreement with the estimates of the perturbative renormalization group (RG) theory can be obtained. Predictions for corrections to scaling of the perturbative RG and GFD approaches are different. A nonperturbative proof is provided, supporting corrections to scaling of the GFD theory. Highly accurate experimental data very close to the λ-transition point in liquid helium, as well as the Goldstone mode sin…
A CRITICAL VIEW ON THE PERTURBATIVE RG METHOD
The perturbative renormalization group (RG) treatment of the Ginzburg–Landau model is reconsidered based on the Feynman diagram technique. We derive RG flow equations, exactly calculating all vertices appearing in the perturbative RG transformation of the φ4 model up to the ε3 order of the ε-expansion. The Fourier-transformed two-point correlation function G(k) has been considered. Although the ε-expansion of X(k) = 1/G(k) is well defined on the critical surface, we have revealed an inconsistency with the exact rescaling of X(k), represented as an expansion in powers of k at k →0. This new result can serve as a basis to challenge the correctness of the ε-expansion-based perturbative RG met…
Semiadiabatic High-Field Polarization Response in Ferroelectrics I: Hysteresis and Nonlinear Susceptibility
Ginzburg-Landau theory for ferroelectric phase instability is combined with Langevin, Fokker-Planck and imaginary time Schrodinger equation techniques to model impact of thermal noise in the kinetics of ferroelectric polarization. The proposed real space/real time numerical method allows to efficiently simulating relaxation, dynamic hysteresis and general dielectric response.
Some aspects of the nonperturbative renormalization of the phi^4 model
A nonperturbative renormalization of the phi^4 model is considered. First we integrate out only a single pair of conjugated modes with wave vectors +/- q. Then we are looking for the RG equation which would describe the transformation of the Hamiltonian under the integration over a shell Lambda - d Lambda < k < Lambda, where d Lambda -> 0. We show that the known Wegner--Houghton equation is consistent with the assumption of a simple superposition of the integration results for +/- q. The renormalized action can be expanded in powers of the phi^4 coupling constant u in the high temperature phase at u -> 0. We compare the expansion coefficients with those exactly calculated by the…
Surface tension and interfacial fluctuations in d-dimensional Ising model
The surface tension of rough interfaces between coexisting phases in 2D and 3D Ising models are discussed in view of the known results and some original calculations presented in this paper. The results are summarised in a formula, which allows to interpolate the corrections to finite-size scaling between two and three dimensions. The physical meaning of an analytic continuation to noninteger values of the spatial dimensionality d is discussed. Lattices and interfaces with properly defined fractal dimensions should fulfil certain requirements to possibly have properties of an analytic continuation from d-dimensional hypercubes. Here 2 appears as the marginal value of d below which the (d-1)…
Nucleation in physical and nonphysical systems
Abstract The aggregation of particles out of an initially homogeneous situation is well known in physics. Depending on the system under consideration and its control parameters, the cluster formation in a supersaturated (metastable or unstable) situation has been observed in nucleation physics as well as in other branches. We investigate the well-known example of condensation (formation of liquid droplets) in an undercooled vapour to conclude that the formation of bound states as a phase transition is related to transportation science. We present a comparison of nucleation in an isothermal–isochoric container with traffic congestion on a circular one-lane freeway. The analysis is based, in …
Theory and modeling of polarization switching in ferroelectrics
Abstract Kinetics of polarization response in ferroelectrics is reproduced within Langevin, Fokker–Planck and imaginary time Schrodinger equation techniques for energy functionals of growing complexity modeling an assembly of coarse grained particles with attractive first neighbor interaction. Symplectic integration based numerical approach captures dynamic hysteresis, polarization switching, and spatially extended stationary polarization. Solution of relevant nonstationary problem is adapted to large scale parallel computing.