0000000000383373
AUTHOR
Mojca ČAkić Semenčić
Bis- and Trisamides Derived From 1′-Aminoferrocene-1-carboxylic Acid and α-Amino Acids: Synthesis and Conformational Analysis
Ferrocene derivatives with one or two achiral and chiral arms based on α-amino acids (Gly, l-Ala, l-Val) attached to the cyclopentadienyl rings were prepared by solution-phase peptide synthesis from N-acetyl- and N-Boc-protected 1′-aminoferrocene-1-carboxylic acids (Boc = tert-butoxycarbonyl). The conformational preference in the solid state of selected examples was elucidated by X-ray crystallography. The chiroptical properties of chiral bis- and trisamides were investigated by circular dichroism (CD) spectroscopy in solution. The conformational preference was studied by NMR and IR spectroscopy, as well as by molecular modeling (DFT). For the bisamides, a conformational library is observed…
Bioconjugates of 1’-Aminoferrocene-1-carboxylic Acid with (S)-3-Amino-2-methylpropanoic Acid and L-Alanine
Formal CH 2 insertion in bioconjugates composed of 1'-aminoferrocene-1-carboxylic acid (Fca) and alanine Boc-Ala-Fca-Ala-OCH 3 gives Fca bioconjugates with the β-amino acid (S)-3-amino-2-methylpropanoic acid (Aib). The novel homologous conjugates of ferrocene were fully characterized by spectroscopic and analytical methods. NMR, CD and IR spectroscopy in concert with DFT calculations suggest that the formal "L-Ala-to-(S)-β-Aib mutations" can exert ferrocene helix inversion due to the different stereogenic carbon atoms of L -Ala and (S)-β-Aib. Furthermore, the mutation (de-)stabilizes the conserved secondary structure with two intramolecular hydrogen bonds, depending on the "mutation site". …