0000000000383414
AUTHOR
C. Patrick Royall
Dynamical phase transitions and their relation to structural and thermodynamic aspects of glass physics.
We review recent developments in structural–dynamical phase transitions in trajectory space based on dynamic facilitation theory. An open question is how the dynamic facilitation perspective on the glass transition may be reconciled with thermodynamic theories that posit collective reorganization accompanied by a growing static length scale and, eventually, a vanishing configurational entropy. In contrast, dynamic facilitation theory invokes a dynamical phase transition between an active phase (close to the normal liquid) and an inactive phase, which is glassy and whose order parameter is either a time-averaged dynamic or structural quantity. In particular, the dynamical phase transition in…
Preface: Special Issue on Structure in Glassy and Jammed Systems
This special issue presents new developments in our understanding of the role of structure in dynamical arrest and jamming. Articles highlight local geometric motifs and other forms of amorphous order, in experiment, computer simulation and theory.
Direct Observation in 3d of Structural Crossover in Binary Hard Sphere Mixtures
For binary fluid mixtures of spherical particles in which the two species are sufficiently different in size, the dominant wavelength of oscillations of the pair correlation functions is predicted to change from roughly the diameter of the large species to that of the small species along a sharp crossover line in the phase diagram [C. Grodon, M. Dijkstra, R. Evans & R. Roth, J.Chem.Phys. 121, 7869 (2004)]. Using particle-resolved colloid experiments in 3d we demonstrate that crossover exists and that its location in the phase diagram is in quantitative agreement with the results of both theory and our Monte-Carlo simulations. In contrast with previous work [J. Baumgartl, R. Dullens, M. …
Coupling between criticality and gelation in "sticky" spheres: a structural analysis.
We combine experiments and simulations to study the link between criticality and gelation in sticky spheres. We employ confocal microscopy to image colloid-polymer mixtures and Monte Carlo simulations of the square-well (SW) potential as a reference model. To this end, we map our experimental samples onto the SW model. We find an excellent structural agreement between experiments and simulations, both for locally favored structures at the single particle level and large-scale fluctuations at criticality. We follow in detail the rapid structural change in the critical fluid when approaching the gas-liquid binodal and highlight the role of critical density fluctuations for this structural cro…
Experimental Evidence for a Structural-Dynamical Transition in Trajectory Space.
Among the key insights into the glass transition has been the identification of a non-equilibrium phase transition in trajectory space which reveals phase coexistence between the normal supercooled liquid (active phase) and a glassy state (inactive phase). Here we present evidence that such a transition occurs in experiment. In colloidal hard spheres we find a non-Gaussian distribution of trajectories leaning towards those rich in locally favoured structures (LFS), associated with the emergence of slow dynamics. This we interpret as evidence for an non-equilibrium transition to an inactive LFS-rich phase. Reweighting trajectories reveals a first-order phase transition in trajectory space be…
Transmission of torque at the nanoscale
In macroscopic mechanical devices torque is transmitted through gearwheels and clutches. In the construction of devices at the nanoscale, torque and its transmission through soft materials will be a key component. However, this regime is dominated by thermal fluctuations leading to dissipation. Here we demonstrate the principle of torque transmission for a disc-like colloidal assembly exhibiting clutch-like behaviour, driven by $27$ particles in optical traps. These are translated on a circular path to form a rotating boundary that transmits torque to additional particles confined to the interior. We investigate this transmission and find that it is determined by solid-like or fluid-like be…