0000000000383447
AUTHOR
Alfons Schwarzenboeck
Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)
Abstract. Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sector…
Airborne investigation of the aerosols–cloud interactions in the vicinity and within a marine stratocumulus over the North Sea during EUCAARI (2008)
Abstract Within the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Meteo France research aircraft ATR-42 was operated from Rotterdam (Netherlands) airport during May 2008, to perform scientific flights dedicated to the investigation of aerosol–cloud interactions. The objective of this study is to illustrate the impact of cloud processing on the aerosol particle physical and chemical properties. The presented results are retrieved from measurements during flight operation with two consecutive flights, first from Rotterdam to Newcastle (United Kingdom) and subsequently reverse along the same waypoints back to Rotterdam using data measured with compact Time …
New particle formation events measured on board the ATR-42 aircraft during the EUCAARI campaign
Aerosol properties were studied during an intensive airborne measurement campaign that took place at Rotterdam in Netherlands in May 2008 within the framework of the European Aerosol Cloud Climate and Air Quality Interactions project (EUCAARI). The objective of this study is to illustrate seven events of new particle formation (NPF) observed with two Condensation Particle Counters (CPCs) operated on board the ATR-42 research aircraft in airsectors around Rotterdam, and to provide information on the spatial extent of the new particle formation phenomenon based on 1-s resolution measurements of ultra-fine particle (in the size range 3–10 nm diameter, denoted N<sub>3-10</sub> herea…
In situ measurements of ice saturation in young contrails
Relative humidity with respect to ice (RHi) is a major factor controlling the evolution of aircraft contrails. High-resolution airborne H2O measurements in and near contrails were made at a rate of 4.2 Hz using the novel water vapor mass spectrometer AIMS-H2O with in-flight calibration during the CONtrail, volcano, and Cirrus ExpeRimenT (CONCERT) 2011. Three 2 min old contrails were sampled near 11 km altitude. Independent of the ambient supersaturation or subsaturation over ice, the mean of the RHi frequency distribution within each contrail is shifted toward ice saturation. This shift can be explained by the high ice surface area densities with corresponding RHi relaxation times on the or…
In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity
International audience; Published by Copernicus Publications on behalf of the European Geosciences Union. 9578 M. Beekmann et al.: Evidence for a dominant regional contribution to fine particulate matter levels Abstract. A detailed characterization of air quality in the megacity of Paris (France) during two 1-month intensive campaigns and from additional 1-year observations revealed that about 70 % of the urban background fine particulate matter (PM) is transported on average into the megacity from upwind regions. This dominant influence of regional sources was confirmed by in situ measurements during short intensive and longer-term campaigns, aerosol optical depth (AOD) measurements from E…
Design, construction and commissioning of the Braunschweig Icing Wind Tunnel
Beyond its physical importance in both fundamental and climate research, atmospheric icing is considered as a severe operational condition in many engineering applications like aviation, electrical power transmission and wind-energy production. To reproduce such icing conditions in a laboratory environment, icing wind tunnels are frequently used. In this paper, a comprehensive overview on the design, construction and commissioning of the Braunschweig Icing Wind Tunnel is given. The tunnel features a test section of 0.5 m × 0.5 m with peak velocities of up to 40 m s−1. The static air temperature ranges from −25 to +30 °C. Supercooled droplet icing with liquid water contents up to 3 g m−3 c…
Impact of cloud processes on aerosol particle properties: results from two ATR-42 flights in an extended stratocumulus cloud layer during the EUCAARI campaign (2008)
Abstract. Within the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project, the Meteo France research aircraft ATR-42 was operated from Rotterdam airport during May 2008, to perform scientific flights dedicated to the investigation of aerosol-cloud interactions. Therein, the objective of this study is to illustrate the impact of cloud processing on the aerosol particles physical and chemical properties. The presented results are retrieved from measurements during a double-flight mission from Rotterdam (Netherlands) to Newcastle (UK) and back using data measured with compact Time of Flight Aerosol Mass Spectrometer (cToF-AMS) and Scanning Mobility Particle Sizer (SMPS…
Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study
Abstract. During the West African summer monsoon, pollutants emitted in urbanized coastal areas modify cloud cover and precipitation patterns. The Dynamics-Aerosol-Chemistry-Cloud-Interactions in West Africa (DACCIWA) field campaign provided numerous aircraft-based and ground-based observations, which are used here to evaluate two experiments made with the coupled WRF-CHIMERE model, integrating both the direct and indirect aerosol effect on meteorology. During one well-documented week (1–7 July 2016), the impacts of anthropogenic aerosols on the diurnal cycle of low-level clouds and precipitation are analyzed in detail using high and moderate intensity of anthropogenic emissions in the expe…