0000000000384257

AUTHOR

Carl Pfendner

showing 3 related works from this author

Neutrino oscillation studies with IceCube-DeepCore

2016

IceCube, a gigaton-scale neutrino detector located at the South Pole, was primarily designed to search for astrophysical neutrinos with energies of PeV and higher. This goal has been achieved with the detection of the highest energy neutrinos to date. At the other end of the energy spectrum, the DeepCore extension lowers the energy threshold of the detector to approximately 10 GeV and opens the door for oscillation studies using atmospheric neutrinos. An analysis of the disappearance of these neutrinos has been completed, with the results produced being complementary with dedicated oscillation experiments. Following a review of the detector principle and performance, the method used to make…

Physics::Instrumentation and DetectorsSolar neutrinopoleinteraction [neutrino nucleon]PINGU01 natural sciences7. Clean energyneutrino nucleon: interactionIceCubeenergy: thresholdAstronomi astrofysik och kosmologineutrino: atmosphereAstronomy Astrophysics and Cosmologydetector [neutrino]Physicsneutrino: energy spectrumoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]Cosmic neutrino backgroundneutrino: detectorNeutrino detectorPhysique des particules élémentairesMeasurements of neutrino speedNeutrinoperformanceNuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical Phenomenaneutrino: mass differenceddc:500.2530neutrino: energySOUTH-POLE0103 physical sciencesddc:530010306 general physicsNeutrino oscillation010308 nuclear & particles physicsICEenergy spectrum [neutrino]Solar neutrino problemneutrino: mixing anglePhysics and Astronomyenergy [neutrino]High Energy Physics::Experimentneutrino: oscillationNeutrino astronomyMATTERSYSTEMmixing angle [neutrino]experimental results
researchProduct

Atmospheric and astrophysical neutrinos above 1 TeV interacting in IceCube

2015

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. A search for $\gtrsim 100$~TeV neutrinos interacting inside the instrumented volume has recently provided evidence for an isotropic flux of such neutrinos. At lower energies, IceCube collects large numbers of neutrinos from the weak decays of mesons in cosmic-ray air showers. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1~TeV and 1~PeV in 641 days of data taken from 2010--2012, lowering the energy threshold for neutrinos from the southern sky below 10 TeV for the first time, far bel…

HIGH-ENERGY NEUTRINOSNuclear and High Energy PhysicsParticle physicsAMANDAMesonSolar neutrinoAstrophysics::High Energy Astrophysical PhenomenaINDUCED CASCADESFOS: Physical sciencesCosmic rayAstrophysicsFLUX PREDICTIONS01 natural sciencesIceCube Neutrino ObservatoryIceCubeObservatorySEARCH0103 physical sciencesddc:530Blazar010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyAstrophysics::Instrumentation and Methods for AstrophysicsASTRONOMYPERFORMANCEBLAZARSPROMPT LEPTONSGAMMA-RAYPhysics and AstronomyHigh Energy Physics::ExperimentNeutrino astronomyNeutrinoAstrophysics - High Energy Astrophysical PhenomenaphysicsPhysical Review D
researchProduct

Characterization of the atmospheric muon flux in IceCube

2015

Muons produced in atmospheric cosmic ray showers account for the by far dominant part of the event yield in large-volume underground particle detectors. The IceCube detector, with an instrumented volume of about a cubic kilometer, has the potential to conduct unique investigations on atmospheric muons by exploiting the large collection area and the possibility to track particles over a long distance. Through detailed reconstruction of energy deposition along the tracks, the characteristics of muon bundles can be quantified, and individual particles of exceptionally high energy identified. The data can then be used to constrain the cosmic ray primary flux and the contribution to atmospheric …

Prompt leptonsleptonAtmospheric muons; Cosmic rays; Prompt leptons; Astronomy and AstrophysicsPhysics::Instrumentation and DetectorsHadronAtmospheric muonsprimary [cosmic radiation]PROTON01 natural sciencesIceCubesurface [detector]atmosphere [muon]NEUTRINO TELESCOPEproduction [muon]PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)ELEMENTAL GROUPSDetectormodel [interaction]Astrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAY MUONSENERGY-SPECTRUMvector mesonstatisticsINTRINSIC CHARMddc:540Physique des particules élémentaireshigh [energy]Astrophysics - High Energy Astrophysical Phenomenaatmosphere [showers]Atmosperic muonsexceptionalairflux [muon]Astrophysics::High Energy Astrophysical Phenomenaspectrum [multiplicity]energy spectrumFOS: Physical sciencesCosmic rayatmosphere [cosmic radiation]Nuclear physicscosmic rays0103 physical sciencesARRIVAL DIRECTIONSVector meson010306 general physicsCosmic raysZenithANISOTROPYMuon010308 nuclear & particles physicsAstronomy and AstrophysicsSpectral componenttracksMODELPhysics and Astronomy13. Climate actionTEVspectralHigh Energy Physics::ExperimenthadronLepton
researchProduct