0000000000384327
AUTHOR
Roberto Marzari
Selection and characterization of a novel agonistic human recombinant anti-Trail-R2 minibody with anti-leukemic activity
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising natural anticancer therapeutic agent because through its “death receptors”, TRAIL-R1 and TRAIL-R2, it induces apoptosis in many transformed tumor cells, but not in the majority of normal cells. Hence, agonistic compounds directed against TRAIL death receptors have the potential of being excellent cancer therapeutic agents, with minimal cytotoxicity in normal tissues. Here, we report the selection and characterization of a new single-chain fragment variable (scFv) to TRAIL-R2 receptor isolated from a human phage-display library, produced as minibody (MB), and characterized for the in vitro anti-leukemic tumoricid…
In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab.
AbstractAn in vivo model of human CD20+ B-lymphoma was established in severe combined immunodeficiency mice to test the ability of human neutralizing miniantibodies to CD55 and CD59 (MB55 and MB59) to enhance the therapeutic effect of rituximab. The miniantibodies contained single-chain fragment variables and the hinge-CH2-CH3 domains of human IgG1. LCL2 cells were selected for the in vivo study among six B-lymphoma cell lines for their high susceptibility to rituximab-dependent complement-mediated killing enhanced by MB55 and MB59. The cells injected i.p. primarily colonized the liver and spleen, leading to the death of the animals within 30 to 40 days. Thirty percent of mice receiving bio…
Bispecific antibodies targeting tumor-associated antigens and neutralizing complement regulators increase the efficacy of antibody-based immunotherapy in mice.
The efficacy of antibody-based immunotherapy is due to the activation of apoptosis, the engagement of antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity (CDC). We developed a novel strategy to enhance CDC using bispecific antibodies (bsAbs) that neutralize the C-regulators CD55 and CD59 to enhance C-mediated functions. Two bsAbs (MB20/55 and MB20/59) were designed to recognize CD20 on one side. The other side neutralizes CD55 or CD59. Analysis of CDC revealed that bsAbs could kill 4-25 times more cells than anti-CD20 recombinant antibody in cell lines or cells isolated from patients with chronic lymphocytic leukemia. The pharmacokinetics of the bsAbs was evaluate…