0000000000384417
AUTHOR
Claude Fabre
Multimode entanglement in reconfigurable graph states using optical frequency combs
Multimode entanglement is an essential resource for quantum information processing and quantum metrology. However, multimode entangled states are generally constructed by targeting a specific graph configuration. This yields to a fixed experimental setup that therefore exhibits reduced versatility and scalability. Here we demonstrate an optical on-demand, reconfigurable multimode entangled state, using an intrinsically multimode quantum resource and a homodyne detection apparatus. Without altering either the initial squeezing source or experimental architecture, we realize the construction of thirteen cluster states of various sizes and connectivities as well as the implementation of a secr…
Multimode OPOs as Sources for Multipartite Entanglement
We present here multimode OPOs as a source of multimode squeezing and multipartite entanglement of continuous-wave light beams, with applications to the engineering of multimode states of light in the spatial and spectral domains.
Generation of multimode squeezing and entanglement in the space and frequency domains : A general “supermode” approach
Optical parametric oscillators (OPO) have been extensively used in the continuous variable quantum optics community as a resource to produce non-classical states of light, including squeezed states or entangled beams. They have been widely studied, theoretically and experimentally, in the single mode case, and have found many applications to quantum information protocols and high sensitivity optical measurements. However, as the complexity of quantum information protocols increases, the need for multiplexed quantum channels has emerged, which require the use of multimode non-classical states of light.
A direct approach to Gaussian measurement based quantum computation
In this work we introduce a general scheme for measurement based quantum computation in continuous variables. Our approach does not necessarily rely on the use of ancillary cluster states to achieve its aim, but rather on the detection of a resource state in a suitable mode basis followed by digital post-processing, and involves an optimization of the adjustable experimental parameters. After introducing the general method, we present some examples of application to simple specific computations.
Multimode squeezing of frequency combs
We have developed a full multimode theory of a synchronously pumped type-I optical parametric oscillator. We calculate the output quantum fluctuations of the device and find that, in the degenerate case (coincident signal and idler set of frequencies), significant squeezing is obtained when one approaches threshold from below for a set of well-defined ``supermodes,'' or frequency combs, consisting of a coherent linear superposition of signal modes of different frequencies which are resonant in the cavity.