0000000000384450

AUTHOR

Thomas Reuter

showing 3 related works from this author

Higher MLCT lifetime of carbene iron(ii) complexes by chelate ring expansion

2021

Combining strong σ-donating N-heterocyclic carbene ligands and π-accepting pyridine ligands with a high octahedricity in rigid iron(ii) complexes increases the 3MLCT lifetime from 0.15 ps in the prototypical [Fe(tpy)2]2+ complex to 9.2 ps in [Fe(dpmi)2]2+12+. The tripodal CNN ligand dpmi (di(pyridine-2-yl)(3-methylimidazol-2-yl)methane) forms six-membered chelate rings with the iron(ii) centre leading to close to 90° bite angles and enhanced iron-ligand orbital overlap.

010405 organic chemistryLigandMetals and AlloysGeneral ChemistryOrbital overlap010402 general chemistryRing (chemistry)01 natural sciencesCatalysisPyridine ligand0104 chemical sciencesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundCrystallographychemistryMaterials ChemistryCeramics and CompositesChelationCarbeneChemical Communications
researchProduct

Ground- and Excited-State Properties of Iron(II) Complexes Linked to Organic Chromophores

2020

Two new bichromophoric complexes, [Fe(bim-ant)2]2+ and [Fe(bim-pyr)2]2+ ([H2-bim]2+ = 1,1′-(pyridine-2,6-diyl)bis(3-methyl-1H-imidazol-3-ium); ant = 9-anthracenyl; pyr = 1-pyrenyl), are investigate...

Inorganic ChemistryCrystallography010405 organic chemistryChemistryExcited statePhysical and Theoretical ChemistryChromophore010402 general chemistry01 natural sciences0104 chemical sciencesInorganic Chemistry
researchProduct

Exploring new activating groups for reactive cysteine NCAs

2016

Abstract Due to its ability to reversibly crosslink proteins, cysteine has a unique role as an amino acid in nature. For controlled, asymmetric formation of disulfides from two thiols, one thiol needs to be activated. While few activating groups for cysteine have been proposed, they are usually not stable against amines making them unsuitable for solid phase peptide synthesis or amine initiated polymerization of α-amino acid-N-carboxy-anhydrides (NCAs). In this Letter we describe a series of new thiol activated cysteines, as well as their NCAs and explore the link between electron deficiency of the leaving group and control over NCA polymerization.

chemistry.chemical_classificationOrganic ChemistryLeaving group02 engineering and technologyElectron deficiency010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesBiochemistryCombinatorial chemistry0104 chemical sciencesAmino acidchemistry.chemical_compoundchemistryPolymerizationDrug DiscoveryThiolPeptide synthesisOrganic chemistryAmine gas treating0210 nano-technologyCysteineTetrahedron Letters
researchProduct