0000000000384732

AUTHOR

A. Joshua West

Lithium isotope evidence for enhanced weathering and erosion during the Paleocene-Eocene Thermal Maximum.

Description

research product

Mercury contents and isotope ratios from diverse depositional environments across the Triassic–Jurassic Boundary: Towards a more robust mercury proxy for large igneous province magmatism

Abstract Mercury is gaining prominence as a proxy for large igneous province (LIP) volcanism in the sedimentary record. Despite temporal overlap between some mass extinctions and LIPs, the precise timing of magmatism relative to major ecological and environmental change is difficult to untangle, especially in marine settings. Changes in the relative contents of Hg in sedimentary rocks through time, or ‘Hg anomalies’, can help resolve the timing of LIP activity and marine extinctions. However, major questions remain unanswered about the fidelity of Hg as a proxy for LIP magmatism. In particular, depositional (e.g., redox) and post-depositional (e.g., oxidative weathering) processes can affec…

research product

The lithium and magnesium isotope signature of olivine dissolution in soil experiments

Abstract This study presents lithium and magnesium isotope ratios of soils and their drainage waters from a well-characterised weathering experiment with two soil cores, one with olivine added to the surface layer, and the other a control core. The experimental design mimics olivine addition to soils for CO2 sequestration and/or crop fertilisation, as well as natural surface addition of reactive minerals such as during volcanic deposition. More generally, this study presents an opportunity to better understand how isotopic fractionation records weathering processes. At the start of the experiment, waters draining both cores have similar Mg isotope composition to the soil exchangeable pool. …

research product