0000000000384846

AUTHOR

Krystyna Keleman

0000-0003-2044-1981

showing 2 related works from this author

Comm Sorts Robo to Control Axon Guidance at the Drosophila Midline

2002

AbstractAxon growth across the Drosophila midline requires Comm to downregulate Robo, the receptor for the midline repellent Slit. We show here that comm is required in neurons, not in midline cells as previously thought, and that it is expressed specifically and transiently in commissural neurons. Comm acts as a sorting receptor for Robo, diverting it from the synthetic to the late endocytic pathway. A conserved cytoplasmic LPSY motif is required for endosomal sorting of Comm in vitro and for Comm to downregulate Robo and promote midline crossing in vivo. Axon traffic at the CNS midline is thus controlled by the intracellular trafficking of the Robo guidance receptor, which in turn depends…

Central Nervous SystemEmbryo NonmammalianEndosomeGrowth ConesMolecular Sequence DataEndocytic cycleDown-RegulationNerve Tissue ProteinsReceptors Cell SurfaceCell CommunicationEndosomesBiologyModels BiologicalFunctional LateralityGeneral Biochemistry Genetics and Molecular BiologySequence Homology Nucleic AcidEctodermmedicineAnimalsDrosophila ProteinsReceptors ImmunologicAxonTransport VesiclesReceptorSequence Homology Amino AcidBiochemistry Genetics and Molecular Biology(all)Stem CellsCell MembraneGraft SurvivalGene Expression Regulation DevelopmentalMembrane ProteinsCell DifferentiationAnatomyCommissureSlitProtein Structure TertiaryCell biologyProtein TransportDrosophila melanogastermedicine.anatomical_structureCOS CellsRoundaboutAxon guidanceStem Cell TransplantationCell
researchProduct

NDST1 missense mutations in autosomal recessive intellectual disability.

2014

NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in …

AdultMaleModels MolecularCandidate geneAdolescentGenotypeProtein ConformationDNA Mutational AnalysisMutation MissenseGenes RecessiveBiologyBioinformaticsPolymorphism Single NucleotideAnimals Genetically ModifiedEpilepsyConsanguinityYoung AdultProtein structureIntellectual DisabilityIntellectual disabilityGeneticsmedicineMissense mutationAnimalsHumansChildGenetics (clinical)GeneticsGene knockdownMuscular hypotoniaBehavior AnimalComputational BiologyFaciesHigh-Throughput Nucleotide Sequencingmedicine.diseasePhenotypePedigreePhenotypeChild PreschoolGene Knockdown TechniquesDrosophilaFemaleSulfotransferasesGenome-Wide Association StudyAmerican journal of medical genetics. Part A
researchProduct