0000000000384856

AUTHOR

Sandra Ortega-martorell

0000-0001-9927-3209

Towards interpretable classifiers with blind signal separation

Blind signal separation (BSS) is a powerful tool to open-up complex signals into component sources that are often interpretable. However, BSS methods are generally unsupervised, therefore the assignment of class membership from the elements of the mixing matrix may be sub-optimal. This paper proposes a three-stage approach using Fisher information metric to define a natural metric for the data, from which a Euclidean approximation can then be used to drive BSS. Results with synthetic data models of real-world high-dimensional data show that the classification accuracy of the method is good for challenging problems, while retaining interpretability.

research product

Probabilistic quantum clustering

Abstract Quantum Clustering is a powerful method to detect clusters with complex shapes. However, it is very sensitive to a length parameter that controls the shape of the Gaussian kernel associated with a wave function, which is employed in the Schrodinger equation with the role of a density estimator. In addition, linking data points into clusters requires local estimates of covariance which requires further parameters. This paper proposes a Bayesian framework that provides an objective measure of goodness-of-fit to the data, to optimise the adjustable parameters. This also quantifies the probabilities of cluster membership, thus partitioning the data into a specific number of clusters, w…

research product

A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

Background: The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing \ud information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic \ud Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyses \ud single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single \ud voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of\ud tumor type classification from the spectroscopic signal.\ud Methodology/Princ…

research product

Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric

This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…

research product

Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites.

The aim of the paper is two-fold. First, we show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. We propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to b…

research product