0000000000384856

AUTHOR

Sandra Ortega-martorell

0000-0001-9927-3209

showing 5 related works from this author

Towards interpretable classifiers with blind signal separation

2012

Blind signal separation (BSS) is a powerful tool to open-up complex signals into component sources that are often interpretable. However, BSS methods are generally unsupervised, therefore the assignment of class membership from the elements of the mixing matrix may be sub-optimal. This paper proposes a three-stage approach using Fisher information metric to define a natural metric for the data, from which a Euclidean approximation can then be used to drive BSS. Results with synthetic data models of real-world high-dimensional data show that the classification accuracy of the method is good for challenging problems, while retaining interpretability.

business.industryPattern recognitionBlind signal separationSynthetic dataData mappingsymbols.namesakeComponent (UML)Metric (mathematics)symbolsArtificial intelligenceFisher informationbusinessFisher information metricInterpretabilityMathematics
researchProduct

Probabilistic quantum clustering

2020

Abstract Quantum Clustering is a powerful method to detect clusters with complex shapes. However, it is very sensitive to a length parameter that controls the shape of the Gaussian kernel associated with a wave function, which is employed in the Schrodinger equation with the role of a density estimator. In addition, linking data points into clusters requires local estimates of covariance which requires further parameters. This paper proposes a Bayesian framework that provides an objective measure of goodness-of-fit to the data, to optimise the adjustable parameters. This also quantifies the probabilities of cluster membership, thus partitioning the data into a specific number of clusters, w…

Information Systems and ManagementJaccard indexComputer scienceProbabilistic logicEstimatorProbability density function02 engineering and technologyFunction (mathematics)CovarianceMeasure (mathematics)Management Information Systemssymbols.namesakeArtificial Intelligence020204 information systems0202 electrical engineering electronic engineering information engineeringGaussian functionsymbolsCluster (physics)020201 artificial intelligence & image processingStatistical physicsQASoftwareQuantum clusteringKnowledge-Based Systems
researchProduct

A Novel Semi-Supervised Methodology for Extracting Tumor Type-Specific MRS Sources in Human Brain Data

2013

Background: The clinical investigation of human brain tumors often starts with a non-invasive imaging study, providing \ud information about the tumor extent and location, but little insight into the biochemistry of the analyzed tissue. Magnetic \ud Resonance Spectroscopy can complement imaging by supplying a metabolic fingerprint of the tissue. This study analyses \ud single-voxel magnetic resonance spectra, which represent signal information in the frequency domain. Given that a single \ud voxel may contain a heterogeneous mix of tissues, signal source identification is a relevant challenge for the problem of\ud tumor type classification from the spectroscopic signal.\ud Methodology/Princ…

Magnetic Resonance SpectroscopyStatistics as TopicBioinformaticsSignalDiagnostic RadiologyEngineeringDiscriminative modelBasic Cancer ResearchMathematical ComputingNeurological TumorsComplement (set theory)PhysicsMultidisciplinaryBrain NeoplasmsApplied MathematicsQRBrainMagnetic Resonance ImagingIdentification (information)OncologyFrequency domainMetric (mathematics)MedicineRadiologyAlgorithmsResearch ArticleScienceLipid signalingGlioblastoma multiformeMatrix decompositionRC0254Magnetic resonance imagingCancer detection and diagnosisMagnetic resonance spectroscopyCancer Detection and DiagnosisHumansPrototypesbusiness.industryFingerprint (computing)Cancers and NeoplasmsData acquisitionPattern recognitionComputing MethodsR1Computer ScienceSignal ProcessingRC0321Artificial intelligencebusinessMathematics
researchProduct

Scalable implementation of measuring distances in a Riemannian manifold based on the Fisher Information metric

2019

This paper focuses on the scalability of the Fisher Information manifold by applying techniques of distributed computing. The main objective is to investigate methodologies to improve two bottlenecks associated with the measurement of distances in a Riemannian manifold formed by the Fisher Information metric. The first bottleneck is the quadratic increase in the number of pairwise distances. The second is the computation of global distances, approximated through a fully connected network of the observed pairwise distances, where the challenge is the computation of the all sources shortest path (ASSP). The scalable implementation for the pairwise distances is performed in Spark. The scalable…

0209 industrial biotechnologyComputer science02 engineering and technologyRiemannian manifoldBottleneckManifoldsymbols.namesake020901 industrial engineering & automationShortest path problemSpark (mathematics)Scalability0202 electrical engineering electronic engineering information engineeringsymbols020201 artificial intelligence & image processingFisher informationAlgorithmDijkstra's algorithmFisher information metric2019 International Joint Conference on Neural Networks (IJCNN)
researchProduct

Robust Conditional Independence maps of single-voxel Magnetic Resonance Spectra to elucidate associations between brain tumours and metabolites.

2020

The aim of the paper is two-fold. First, we show that structure finding with the PC algorithm can be inherently unstable and requires further operational constraints in order to consistently obtain models that are faithful to the data. We propose a methodology to stabilise the structure finding process, minimising both false positive and false negative error rates. This is demonstrated with synthetic data. Second, to apply the proposed structure finding methodology to a data set comprising single-voxel Magnetic Resonance Spectra of normal brain and three classes of brain tumours, to elucidate the associations between brain tumour types and a range of observed metabolites that are known to b…

False discovery rateB VitaminsMagnetic Resonance SpectroscopyComputer scienceDirected Acyclic GraphsBiochemistry030218 nuclear medicine & medical imaging0302 clinical medicineMetabolitesMedicine and Health SciencesAmino AcidsQANeurological Tumors0303 health sciencesMultidisciplinaryDirected GraphsOrganic CompoundsBrain NeoplasmsQRTotal Cell CountingBrainMutual informationVitaminsLipidsChemistryConditional independenceOncologyNeurologyPhysical SciencesEngineering and TechnologyMedicineMeningiomaAlgorithmManagement EngineeringAlgorithmsResearch ArticleComputer and Information SciencesScienceCell Enumeration TechniquesGlycineFeature selectionCholinesResearch and Analysis MethodsSynthetic data03 medical and health sciencesInsuranceRobustness (computer science)HumansMetabolomics030304 developmental biologyRisk ManagementOrganic ChemistryChemical CompoundsBayesian networkBiology and Life SciencesCancers and NeoplasmsProteinsBayes TheoremDirected acyclic graphR1MetabolismAliphatic Amino AcidsGraph TheoryMathematicsPLoS ONE
researchProduct