0000000000384892
AUTHOR
Roman Grill
Time-dependent electric field in Al/CdTe/Pt detectors
Abstract Al/CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopy, even though they suffer from bias-induced time instability (polarization). Polarization phenomena cause a progressive time-degradation of the spectroscopic performance of the detectors, due to hole trapping and detrapping from deep acceptor levels that directly control the electric field distribution. In this work we present experimental investigations on the electric field profile of planar Al/CdTe/Pt detectors by means of Pockels effect measurements. The time/temperature dependence of the electric field was investigated in a long time window (up to 10 h) and the correlation with the reverse c…
Optimization of quasi-hemispherical CdZnTe detectors by means of first principles simulation
AbstractIn this paper we present the development of quasi-hemispherical gamma-ray detectors based on CdZnTe. Among the possible single-polarity electrode configurations, such as coplanar, pixelated, or virtual Frisch-grid geometries, quasi-hemispherical detectors are the most cost-effective alternative with comparable raw energy resolution in the high and low energy range. The optimal configuration of the sensor in terms of dimension of the crystals and electrode specifications has been first determined by simulations, and successively validated with experimental measures. Spectra from different sources have been acquired to evaluate the detectors performances. Three types of detectors with…
Electric field manipulation in Al/CdTe/Pt detectors under optical perturbations
Abstract Al/CdTe/Pt detectors are very attractive devices for high-resolution X-ray spectroscopy, even though they suffer from polarization phenomena, which cause a progressive time degradation of the spectroscopic performance. In this work we investigated on the time dependence of the electric field of an Al/CdTe/Pt detector under optical perturbation by means of Pockels effect measurements. A tunable laser with wavelengths ranging within 700−1000 nm and a 940 nm light emitting diode (LED) were used. The measurements of both the electric field profile and the total current were used to better understand the effects of the optical perturbation on polarization phenomena. The results point ou…