0000000000384902

AUTHOR

Ya-jun Cheng

showing 4 related works from this author

Nanowear on Polymer Films of Different Architecture

2007

In this paper, we describe atomic force microscope (AFM) friction experiments on different polymers. The aim was to analyze the influence of the physical architecture of the polymer on the degree and mode of wear and on the wear mode. Experiments were carried out with (1) linear polystyrene (PS) and cycloolefinic copolymers of ethylene and norbornene, which are stabilized by entanglements, (2) mechanically stretched PS, (3) polyisoprene-b-polystyrene diblock copolymers, with varying composition, (4) brush polymers consisting of a poly(methyl methacrylate) (PMMA) backbone and PS side chains, (5) PMMA and PS brushes grafted from a silicon wafer, (6) plasma-polymerized PS, and (7) chemically c…

chemistry.chemical_classificationMaterials scienceSiliconchemistry.chemical_elementSurfaces and InterfacesPolymerCondensed Matter Physicschemistry.chemical_compoundchemistryvisual_artPolymer chemistryElectrochemistryvisual_art.visual_art_mediumCopolymerSide chainGeneral Materials ScienceWaferPolystyrenePolycarbonateMethyl methacrylateComposite materialSpectroscopyLangmuir
researchProduct

Exciton diffusion controlled quantum efficiency in hybrid dye sensitized solar cells.

2009

Well-ordered and uniform titania nanoparticle arrays were synthesized using diblock copolymers as structure directing agents. High molecular weight copolymers of polystyrene-b-polyethylene oxide and poly(methylmethacrylate)-b-polyethylene oxide were used to control the distance between titania nanoparticles in the range of 20-60 nm. Using these titania nanoparticle arrays and regioregular poly(3-hexylthiophene), models for a dye sensitized photovoltaic cell were assembled, in which the interparticle spacing was systematically varied. In these simplified solar cells, the titania nanocrystals were surrounded by a continuous regioregular poly(3-hexylthiophene) phase. The spacing between the ti…

Materials scienceExcitonOxideGeneral Physics and AstronomyNanoparticleTitanium oxideDye-sensitized solar cellchemistry.chemical_compoundNanocrystalChemical engineeringchemistryPhase (matter)Polymer chemistryQuantum efficiencyPhysical and Theoretical ChemistryPhysical chemistry chemical physics : PCCP
researchProduct

From Spherical Mesopores to Worm-Shaped Mesopores : Morphology Transition in Titania–Polystyrene-b-poly(ethylene oxide) Composite Films with Increasi…

2013

A morphology transition from spherical mesopores to worm-shaped mesopores within titania block copolymer composite thin films has been observed by varying the sol–gel reaction time from 40 min to 48 h in the four-component templating system of polystyrene-$\mathit{b}$-poly(ethylene oxide) (PS-$\mathit{b}$-PEO), 1,4-dioxane, concentrated HCl, and titanium tetraisopropoxide (TTIP) with a PS-$\mathit{b}$-PEO mass concentration of 0.25 wt.-%. The impact of the sol–gel reaction time on the local structure, long-range lateral structure, and vertical structure of the as-prepared, calcined, and UV-degraded thin films as well as the structural changes in solution have been systematically investigate…

ChemieNanotechnologyMicellelaw.inventionInorganic ChemistryX-ray reflectivitychemistry.chemical_compoundDynamic light scatteringchemistryChemical engineeringlawddc:540Grazing-incidence small-angle scatteringCalcinationPolystyreneMesoporous materialSol-gel
researchProduct

Morphology evolution in mesoporous titania block copolymer composite films with increasing Sol-Gel reaction time

2013

A morphology evolution of thin films of titania from spherical mesopores to worm-shaped mesopores was realized by simply varying the sol–gel reaction time from 46 min to 25 h in the quadruple system consisting of polystyrene–block-poly(ethylene oxide) (PS–b-PEO), 1,4-dioxane, concentrated HCl, and titanium tetraisopropoxide (TTIP). Imaging techniques including scanning electron microscopy (SEM) and atomic force microscopy (AFM) were applied to investigate the local structure change of the as-prepared, calcined, and UV-degraded composite films. Grazing incidence small angle X-ray scattering (GISAXS) experiments prove that the structure change in local areas is representative of that over the…

Inorganic ChemistryX-ray reflectivityChemical engineeringDynamic light scatteringScanning electron microscopeChemistryComposite numberCopolymerChemieGrazing-incidence small-angle scatteringNanotechnologyMesoporous materialSol-gel
researchProduct