0000000000385531
AUTHOR
V. J. Kauppila
Collective amplitude mode fluctuations in a flat band superconductor
We study the fluctuations of the amplitude (i.e. the Higgs-Anderson) mode in a superconducting system of coupled Dirac particles proposed as a model for possible surface or interface superconductivity in rhombohedral graphite. We show that the absence of Fermi energy and vanishing of the excitation gap of the collective amplitude mode in the model leads to a large fluctuation contribution to thermodynamic quantities such as the heat capacity. As a consequence, the mean-field theory becomes inaccurate indicating that the interactions lead to a strongly correlated state. We also present a microscopic derivation of the Ginzburg-Landau theory corresponding to this model.
Collective amplitude mode fluctuations in a flat band superconductor formed at a semimetal surface
We study the fluctuations of the amplitude (i.e., the Higgs-Anderson) mode in a superconducting system of coupled Dirac particles proposed as a model for possible surface or interface superconductivity in rhombohedral graphite. This system also serves as a generic model of a topological semimetal with an interaction-driven transition on its surface. We show that the absence of Fermi energy and vanishing of the excitation gap of the collective amplitude mode in the model leads to a large fluctuation contribution to thermodynamic quantities, such as the heat capacity. As a consequence, the mean-field theory becomes inaccurate, indicating that the interactions lead to a strongly correlated sta…
Flat-band superconductivity in strained Dirac materials
We consider superconducting properties of a two-dimensional Dirac material such as graphene under strain that produces a flat band spectrum in the normal state. We show that in the superconducting state, such a model results in a highly increased critical temperature compared to the case without the strain, inhomogenous order parameter with two-peak shaped local density of states and yet a large and almost uniform and isotropic supercurrent. This model could be realized in strained graphene or ultracold atom systems and could be responsible for unusually strong superconductivity observed in some graphite interfaces and certain IV-VI semiconductor heterostructures.