0000000000385607

AUTHOR

Joerg Wunderlich

showing 4 related works from this author

Relativistic Neel-order fields induced by electrical current in antiferromagnets

2014

We predict that a lateral electrical current in antiferromagnets can induce non-equilibrium N\'eel order fields, i.e. fields whose sign alternates between the spin sublattices, which can trigger ultra-fast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intra-band and to the intrinsic inter-band spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we considered bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry model…

PhysicsCondensed Matter - Materials ScienceCondensed matter physicsPoint reflectionGeneral Physics and AstronomyNon-equilibrium thermodynamicsMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesTransport theory3. Good healthElectrical currentFerromagnetismQuantum mechanicsAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsUltrashort pulse
researchProduct

Terahertz electrical writing speed in an antiferromagnetic memory

2018

The speed of writing of state-of-the-art ferromagnetic memories is physically limited by an intrinsic gigahertz threshold. Recently, realization of memory devices based on antiferromagnets, in which spin directions periodically alternate from one atomic lattice site to the next has moved research in an alternative direction. We experimentally demonstrate at room temperature that the speed of reversible electrical writing in a memory device can be scaled up to terahertz using an antiferromagnet. A current-induced spin-torque mechanism is responsible for the switching in our memory devices throughout the 12-order-of-magnitude range of writing speeds from hertz to terahertz. Our work opens the…

Terahertz radiationPhysics::Optics02 engineering and technologyHardware_PERFORMANCEANDRELIABILITY01 natural sciences530Computer Science::Hardware ArchitectureHertz0103 physical sciencesHardware_INTEGRATEDCIRCUITSAntiferromagnetismAtomic lattice010306 general physicsResearch ArticlesSpin-½PhysicsMultidisciplinarybusiness.industrySciAdv r-articles021001 nanoscience & nanotechnologyelectrical writingFerromagnetismApplied Sciences and Engineeringwriting speedComputer ScienceOptoelectronicsCondensed Matter::Strongly Correlated Electronsantiferromagnetic memory0210 nano-technologybusinessRealization (systems)Research ArticleScience Advances
researchProduct

Spin Hall effects

2015

In solid-state materials with strong relativistic spin-orbit coupling, charge currents generate transverse spin currents. The associated spin Hall and inverse spin Hall effects distinguish between charge and spin current where electron charge is a conserved quantity but its spin direction is not. This review provides a theoretical and experimental treatment of this subfield of spintronics, beginning with distinct microscopic mechanisms seen in ferromagnets and concluding with a discussion of optical-, transport-, and magnetization-dynamics-based experiments closely linked to the microscopic and phenomenological theories presented.

PhysicsSpintronicsFerromagnetismCondensed matter physicsQuantum spin Hall effectSpin Hall effectGeneral Physics and AstronomyCondensed Matter::Strongly Correlated ElectronsCharge (physics)Quantum Hall effectElectric chargeSpin-½Reviews of Modern Physics
researchProduct

An antidamping spin–orbit torque originating from the Berry curvature

2014

Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin-orbit torque that stems from the Berry curvature, in analogy to the origin of the …

PhysicsMagnetization dynamicsCondensed matter physicsmedia_common.quotation_subjectPoint reflectionBiomedical EngineeringBioengineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAsymmetryAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceParamagnetismMagnetizationFerromagnetismSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceBerry connection and curvatureElectrical and Electronic Engineeringmedia_commonNature Nanotechnology
researchProduct