0000000000385609

AUTHOR

Aurelien Manchon

0000-0002-4768-293x

Relativistic Neel-order fields induced by electrical current in antiferromagnets

We predict that a lateral electrical current in antiferromagnets can induce non-equilibrium N\'eel order fields, i.e. fields whose sign alternates between the spin sublattices, which can trigger ultra-fast spin-axis reorientation. Based on microscopic transport theory calculations we identify staggered current-induced fields analogous to the intra-band and to the intrinsic inter-band spin-orbit fields previously reported in ferromagnets with a broken inversion-symmetry crystal. To illustrate their rich physics and utility, we considered bulk Mn2Au with the two spin sublattices forming inversion partners, and a 2D square-lattice antiferromagnet with broken structural inversion symmetry model…

research product

Role of spin diffusion in current-induced domain wall motion for disordered ferromagnets

Current-induced spin transfer torque and magnetization dynamics in the presence of spin diffusion in disordered magnetic textures is studied theoretically. We demonstrate using tight-binding calculations that weak, spinconserving impurity scattering dramatically enhances the nonadiabaticity. To further explore this mechanism, a phenomenological drift-diffusion model for incoherent spin transport is investigated. We show that incoherent spin diffusion indeed produces an additional spatially dependent torque of the form ∼∇ 2 [m × (u · ∇)m] + ξ ∇ 2 [(u · ∇)m], where m is the local magnetization direction, u is the direction of injected current, and ξ is a parameter characterizing the spin dyna…

research product

Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect.

We present a combined theoretical and experimental study, investigating the origin of the enhanced non-adiabaticity of magnetic vortex cores. Scanning transmission X-ray microscopy is used to image the vortex core gyration dynamically to measure the non-adiabaticity with high precision, including a high confidence upper bound. Using both numerical computations and analytical derivations, we show that the large non-adiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture-induced emergent Hall effect. This enhanced non-adiabaticity is only present in two- and three-dimensional magnetic textures such as vortices and skyrmions…

research product

Spin-orbit torques in locally and globally non-centrosymmetric crystals: Antiferromagnets and ferromagnets

One of the main obstacles that prevents practical applications of antiferromagnets is the difficulty of manipulating the magnetic order parameter. Recently, following the theoretical prediction [J. \v{Z}elezn\'y et al., PRL 113, 157201 (2014)], the electrical switching of magnetic moments in an antiferromagnet has been demonstrated [P. Wadley et al., Science 351, 587 (2016)]. The switching is due to the so-called spin-orbit torque, which has been extensively studied in ferromagnets. In this phenomena a non-equilibrium spin-polarization exchange coupled to the ordered local moments is induced by current, hence exerting a torque on the order parameter. Here we give a general systematic analys…

research product

Unidirectional Magnon-Driven Domain Wall Motion Due to the Interfacial Dzyaloshinskii-Moriya Interaction

We demonstrate a unidirectional motion of a quasiparticle without an explicit symmetry breaking along the space-time coordinate of the particle motion. This counterintuitive behavior originates from a combined action of two intrinsic asymmetries in the other two directions. We realize this idea with the magnon-driven motion of a magnetic domain wall in thin films with interfacial asymmetry. Contrary to previous studies, the domain wall moves along the same direction regardless of the magnon-flow direction. Our general symmetry analysis and numerical simulation reveal that the odd order contributions from the interfacial asymmetry is unidirectional, which is dominant over bidirectional contr…

research product

Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems

Spin-orbit coupling in inversion-asymmetric magnetic crystals and structures has emerged as a powerful tool to generate complex magnetic textures, interconvert charge and spin under applied current, and control magnetization dynamics. Current-induced spin-orbit torques mediate the transfer of angular momentum from the lattice to the spin system, leading to sustained magnetic oscillations or switching of ferromagnetic as well as antiferromagnetic structures. The manipulation of magnetic order, domain walls and skyrmions by spin-orbit torques provides evidence of the microscopic interactions between charge and spin in a variety of materials and opens novel strategies to design spintronic devi…

research product

Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets

Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking inversion symmetry are theoretically studied using Kubo formula. In addition to the current-driven field-like torque ${\bf T}_{\rm FL}= \tau_{\rm FL}{\bf m}\times{\bf u}_{\rm so}$ (${\bf u}_{\rm so}$ being a unit vector determined by the symmetry of the spin-orbit coupling), we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an anti-damping-like torque of the form ${\bf T}_{\rm DL}= \tau_{\rm DL}{\bf m}\times({\bf u}_{\rm so}\times{\bf m})$. Analytical expressions are obtained in the model case of a magnetic Rashba two-dimension…

research product