0000000000385651
AUTHOR
Andrea Breitkreuz
Humoral immune responses of lung cancer patients against the Transmembrane Phosphatase with TEnsin homology (TPTE).
Abstract Objective The cancer/testis (C/T) antigen Transmembrane Phosphatase with TEnsin homology (TPTE) is aberrantly expressed in many tumors including lung cancer. In the present study, we analyzed TPTE-auto-antibodies in lung cancer patients. Methods Using a crude-lysate ELISA, we analyzed a large cohort of 307 sera from lung cancer patients and 47 healthy donors for TPTE-specific autoantibodies. Sero-reactivity was correlated with clinical parameters and patients’ survival. Results TPTE-specific antibodies were detected in 41 of 307 (13.4%) sera from lung cancer patients. Based on an optimal cut-off value calculated by ROC curve analysis sensitivity for diagnosing lung cancer was 52% a…
Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer
T cells directed against mutant neo-epitopes drive cancer immunity. However, spontaneous immune recognition of mutations is inefficient. We recently introduced the concept of individualized mutanome vaccines and implemented an RNA-based poly-neo-epitope approach to mobilize immunity against a spectrum of cancer mutations. Here we report the first-in-human application of this concept in melanoma. We set up a process comprising comprehensive identification of individual mutations, computational prediction of neo-epitopes, and design and manufacturing of a vaccine unique for each patient. All patients developed T cell responses against multiple vaccine neo-epitopes at up to high single-digit p…
Functional TCR Retrieval from Single Antigen-Specific Human T Cells Reveals Multiple Novel Epitopes
Abstract The determination of the epitope specificity of disease-associated T-cell responses is relevant for the development of biomarkers and targeted immunotherapies against cancer, autoimmune, and infectious diseases. The lack of known T-cell epitopes and corresponding T-cell receptors (TCR) for novel antigens hinders the efficient development and monitoring of new therapies. We developed an integrated approach for the systematic retrieval and functional characterization of TCRs from single antigen-reactive T cells that includes the identification of epitope specificity. This is accomplished through the rapid cloning of full-length TCR-α and TCR-β chains directly from single antigen-spec…