Non-stochastic quadratic fingerprints and LDA-based QSAR models in hit and lead generation through virtual screening: theoretical and experimental assessment of a promising method for the discovery of new antimalarial compounds
In order to explore the ability of non-stochastic quadratic indices to encode chemical information in antimalarials, four quantitative models for the discrimination of compounds having this property were generated and statistically compared. Accuracies of 90.2% and 83.3% for the training and test sets, respectively, were observed for the best of all the models, which included non-stochastic quadratic fingerprints weighted with Pauling electronegativities. With a comparative purpose and as a second validation experiment, an exercise of virtual screening of 65 already-reported antimalarials was carried out. Finally, 17 new compounds were classified as either active/inactive ones and experimen…