Numerical evaluation of iterated integrals related to elliptic Feynman integrals
We report on an implementation within GiNaC to evaluate iterated integrals related to elliptic Feynman integrals numerically to arbitrary precision within the region of convergence of the series expansion of the integrand. The implementation includes iterated integrals of modular forms as well as iterated integrals involving the Kronecker coefficient functions $g^{(k)}(z,\tau)$. For the Kronecker coefficient functions iterated integrals in $d\tau$ and $dz$ are implemented. This includes elliptic multiple polylogarithms.
Numerical evaluation of iterated integrals related to elliptic Feynman integrals
We report on an implementation within GiNaC to evaluate iterated integrals related to elliptic Feynman integrals numerically to arbitrary precision within the region of convergence of the series expansion of the integrand. The implementation includes iterated integrals of modular forms as well as iterated integrals involving the Kronecker coefficient functions g^(k) (z, τ). For the Kronecker coefficient functions iterated integrals in dτ and dz are implemented. This includes elliptic multiple polylogarithms.