0000000000385672
AUTHOR
Morten Haastrup
Modeling of Wind Turbine Gearbox Mounting
In this paper three bushing models are evaluated to find a best practice in modeling the mounting of wind turbine gearboxes. Parameter identification on measurements has been used to determine the bushing parameters for dynamic simulation of a gearbox including main shaft. The stiffness of the main components of the gearbox has been calculated. The torsional stiffness of the main shaft, gearbox and the mounting of the gearbox are of same order of magnitude, and eigenfrequency analysis clearly reveals that the stiffness of the gearbox mounting is of importance when modeling full wind turbine drivetrains.
Modeling and Parameter Identification of Deflections in Planetary Stage of Wind Turbine Gearbox
The main focus of this paper is the experimental and numerical investigation of a 750[kW] wind turbine gearbox. A detailed model of the gearbox with main shaft has been created using MSC.Adams. Special focus has been put on modeling the planet carrier (PLC) in the gearbox. For this purpose experimental data from a drive train test set up has been analyzed using parameter identification to quantify misalignments. Based on the measurements a combination of main shaft misalignment and planet carrier deflection has been identified. A purely numerical model has been developed and it shows good accordance with the experimental data.