Barrier functions and paracellular integrity in human cell culture models of the proximal respiratory unit.
International audience; Airway epithelial cells provide a barrier to the translocation of inhaled materials. Tight (TJ) and adherens junctions (AJ) play a key role in maintaining barrier functions, and are responsible for the selective transport of various substances through the paracellular pathway. In this study we compared a bronchial cell line (16HBE14o-) and primary bronchial cells (HBEC), both cocultivated with the fibroblast cell line Wi-38, with respect to their structural differentiation and their reaction to cytokine stimulation. HBEC formed a pseudostratified epithelial layer and expressed TJ and AJ proteins after 2 weeks in coculture. Mucus-producing and ciliated cells were foun…
Trägt leukozytäres Acetylcholin zur chronischen Abstoßung von Nierentransplantaten bei?
Einleitung: Akute Abstoßungsepisoden prädisponieren für die chronische Abstoßung von Nierentransplantaten. Für die fatale akute Abstoßung haben wir experimentell gezeigt, dass Monozyten, die sich in Transplantatgefäßen massiv ansammeln, Acetylcholin (ACh) produzieren.[for full text, please go to the a.m. URL]
Acetylcholine and Molecular Components of its Synthesis and Release Machinery in the Urothelium
Abstract Objectives Previous studies provided indirect evidence for urothelial synthesis and release of acetylcholine (ACh). We aimed to determine directly the ACh content in the urothelium and to characterize the molecular components of its synthesis and release machinery. Methods The study was performed on mouse bladder and abraded urothelium, and human mucosal bladder biopsies. ACh content was measured by high-performance liquid chromatography-electrochemical. Reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemistry served to investigate expression of ACh-synthesizing enzymes—choline acetyltransferase (ChAT) and carnitine acetyltransferase (CarAT)—vesicular ACh t…
Autoantibodies in complex regional pain syndrome bind to a differentiation-dependent neuronal surface autoantigen.
Complex regional pain syndrome, which is characterised by pain and trophic disturbances, develops frequently after peripheral limb trauma. There is an increasing evidence of an involvement of the immune system in CRPS, and recently we showed that CRPS patients have autoantibodies against nervous system structures. Therefore we tested the sera of CRPS patients, neuropathy patients and healthy volunteers for surface-binding autoantibodies to primary cultures of autonomic neurons and differentiated neuroblastoma cell lines using flow cytometry. Thirteen of 30 CRPS patients, but none of 30 healthy controls and only one of the 20 neuropathy sera had specific surface binding to autonomic neurons …
NOSIP, a novel modulator of endothelial nitric oxide synthase activity.
Production of nitric oxide (NO) in endothelial cells is regulated by direct interactions of endothelial nitric oxide synthase (eNOS) with effector proteins such as Ca2+-calmodulin, by posttranslational modifications such as phosphorylation via protein kinase B, and by translocation of the enzyme from the plasma membrane caveolae to intracellular compartments. Reversible acylation of eNOS is thought to contribute to the intracellular trafficking of the enzyme; however, protein factor(s) that govern the translocation of the enzyme are still unknown. Here we have used the yeast two-hybrid system and identified a novel 34 kDa protein, termed NOSIP (eNOS interacting protein), which avidly binds …
Administration of keratinocyte growth factor down-regulates the pulmonary capacity of acetylcholine production.
Abstract Keratinocyte growth factor protects the lung against various injurious stimuli. The protective mechanisms, however, are not yet fully understood. The aim of this study is to determine the influence of keratinocyte growth factor on the pulmonary capacity to synthesize acetylcholine, a potent regulator of pulmonary functions which is potentially involved in lung damage. Rats were treated twice (days 1 and 2) intratracheally with keratinocyte growth factor and analyzed at day 4. The mRNA expression of choline acetyltransferase – the acetylcholine synthesizing enzyme – was analyzed by real-time RT-PCR in the lung and in isolated alveolar epithelial type II cells. Choline acetyltransfer…
Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts.
Abstract A new role and source of the old mediator acetylcholine is described, which is produced by graft monocytes and attenuates monocytic ATP-signaling. During acute rejection, large numbers of leukocytes accumulate in the blood vessels of experimental renal allografts. About 70% of them are activated, cytotoxic monocytes that appear to be involved in allograft destruction. ACh exerts anti-inflammatory effects upon monocytes/macrophages and has been proposed to be a key player in neuroimmunological interactions. Its short half-life, however, makes it unlikely that neuronal ACh affects blood leukocytes. Renal transplantation was performed in the allogeneic DA to LEW and in the isogeneic L…
Recent progress in revealing the biological and medical significance of the non-neuronal cholinergic system.
This special issue of International Immunopharmacology is the proceedings of the Fourth International Symposium on Non-neuronal Acetylcholine that was held on August 28-30, 2014 at the Justus Liebig University of Giessen in Germany. It contains original contributions of meeting participants covering the significant progress in understanding of the biological and medical significance of the non-neuronal cholinergic system extending from exciting insights into molecular mechanisms regulating this system via miRNAs over the discovery of novel cholinergic cellular signaling circuitries to clinical implications in cancer, wound healing, immunity and inflammation, cardiovascular, respiratory and …