0000000000386672
AUTHOR
A. P. Caricato
Noise Figures of Merit of rf-SQUID-based Josephson Travelling Wave Parametric Amplifiers
The characterization of the rf-SQUID-based JTWPA in terms of its noise figure and gain for different input states (Fock states or Coherent states) has been carried out. The spectral distribution of the noise temperature Tn and gain G presents a region where the amplifier has a relatively high gain with a thermal noise that can go beyond the standard quantum limit =ℏ/2 (valid only for single mode input states [44]) as shown in Fig. 3. The TWJPA is here biased in its 3WM regime and pumped at p = 12 GHz.
MAGIC-5: an Italian mammographic database of digitised images for research
The implementation of a database of digitised mammograms is discussed. The digitised images were collected beginning in 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals as a first step in developing and implementing a computer-aided detection (CAD) system. All 3,369 mammograms were collected from 967 patients and classified according to lesion type and morphology, breast tissue and pathology type. A dedicated graphical user interface was developed to visualise and process mammograms to support the medical diagnosis directly on a high-resolution screen. The database has been the starting point for developing other medical imaging applications,…
Bimodal Approach for Noise Figures of Merit Evaluation in Quantum-Limited Josephson Traveling Wave Parametric Amplifiers
The advent of ultra-low noise microwave amplifiers revolutionized several research fields demanding quantum-limited technologies. Exploiting a theoretical bimodal description of a linear phase-preserving amplifier, in this contribution we analyze some of the intrinsic properties of a model architecture (i.e., an rf-SQUID based Josephson Traveling Wave Parametric Amplifier) in terms of amplification and noise generation for key case study input states (Fock and coherents). Furthermore, we present an analysis of the output signals generated by the parametric amplification mechanism when thermal noise fluctuations feed the device.