0000000000386987

AUTHOR

Michel Guipponi

showing 2 related works from this author

X-linked primary ciliary dyskinesia due to mutations in the cytoplasmic axonemal dynein assembly factor PIH1D3

2017

By moving essential body fluids and molecules, motile cilia and flagella govern respiratory mucociliary clearance, laterality determination and the transport of gametes and cerebrospinal fluid. Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder frequently caused by non-assembly of dynein arm motors into cilia and flagella axonemes. Before their import into cilia and flagella, multi-subunit axonemal dynein arms are thought to be stabilized and pre-assembled in the cytoplasm through a DNAAF2–DNAAF4–HSP90 complex akin to the HSP90 co-chaperone R2TP complex. Here, we demonstrate that large genomic deletions as well as point mutations involving PIH1D3 are responsible for an X-li…

MaleCytoplasmProtein FoldingAxoneme[SDV]Life Sciences [q-bio][SDV.GEN] Life Sciences [q-bio]/Genetics[SDV.MHEP.PSR]Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractouterGenes X-LinkedChilddefectsPhylogenyZebrafisharmsSequence DeletionvariantsIntracellular Signaling Peptides and ProteinsGenetic Diseases X-LinkedPedigreeMultidisciplinary Sciences[SDV] Life Sciences [q-bio]motilityChild PreschoolMicrotubule ProteinsSperm MotilityScience & Technology - Other TopicsFemaleAdultAdolescentinnerUK10K Rare Groupr2tp complexof-function mutationsArticleMicroscopy Electron TransmissionMD MultidisciplinaryExome SequencingAnimalsHumansPoint MutationCiliaHSP90 Heat-Shock Proteins[SDV.GEN]Life Sciences [q-bio]/GeneticsScience & TechnologyKartagener SyndromeInfant NewbornAxonemal DyneinsDisease Models AnimalHEK293 Cells[SDV.MHEP.PSR] Life Sciences [q-bio]/Human health and pathology/Pulmonology and respiratory tractidentifies mutationsproteinApoptosis Regulatory ProteinsSequence AlignmentMolecular ChaperonesNature Communications
researchProduct

Loss of function mutation in the palmitoyl-transferase HHAT leads to syndromic 46,XY disorder of sex development by impeding Hedgehog protein palmito…

2014

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation…

MaleCancer Research[SDV]Life Sciences [q-bio]medicine.disease_causeCell Fate DeterminationMiceTestisMorphogenesisMissense mutationddc:576.5Genetics (clinical)MutationHomozygoteCell DifferentiationHedgehog signaling pathwayPedigreeCell biologyFemaleSignal transductionSignal TransductionResearch Articlemedicine.medical_specialtylcsh:QH426-470LipoylationMolecular Sequence DataMutation MissenseBiologyPalmitoylationHHATInternal medicineGeneticsmedicineAnimalsHumansHedgehog ProteinsAmino Acid SequenceMolecular BiologyHedgehogEcology Evolution Behavior and SystematicsDisorder of Sex Development 46XY[ SDV ] Life Sciences [q-bio]Sequence Homology Amino AcidBiology and Life SciencesSex Determinationlcsh:GeneticsEndocrinology46 XY Disorders of Sex Development/*genetics; Acyltransferases/chemistry/*genetics/metabolism; Amino Acid Sequence; Animals; Female; Hedgehog Proteins/*metabolism; Homozygote; Humans; Lipoylation/*genetics; Male; Mice; Molecular Sequence Data; *Mutation Missense; Pedigree; Sequence Homology Amino Acid; Signal Transduction/*genetics; Testis/embryologyLipid modificationAcyltransferasesDevelopmental Biology
researchProduct