0000000000387488
AUTHOR
Daniel Maynau
Application of the open-shell size-consistent self-consistent singles and doubles configuration interaction method to multielectronic transitions in photoelectron spectra
The size-consistent self-consistent matrix dressing method has been applied on an open-shell single-configuration reference state. Once the reference state is converged, several low-lying roots can be obtained for the dressed configuration interaction (CI) matrices of appropriate symmetry. The CI matrices were built with a complete-active-space singles and doubles CI method in order to deal properly with multiconfiguration excited states. The vertical ionization and ionization–excitation transitions are obtained from the difference to the closed shell ground-state energy of the neutral molecule. The method has been applied to NH+3 and N+2 using atomic natural orbital basis sets and state-av…
Totally dressed SDCI calculations: An application to HF and F2
A previously proposed procedure including the linked and unlinked contributions due to Triple and Quadruple excitations into a size-consistent SDCI-like model has been applied to HF and F2 single-bond systems. The procedure is a non-iterative approximation to the more general total dressing model, which is based on the intermediate Hamiltonians theory. Three basis sets have been employed: the correlation consistent cc-pVTZ basis, a similar one including 3d1f polarization functions, and another including one set of g polarization functions. Excellent agreement with experiment and high-quality calculations is obtained for both equilibrium distances and spectroscopic constants. The possibiliti…
Size-consistent single-reference methods for electronic correlation: a unified formulation through intermediate hamiltonian theory
Using the intermediate hamiltonian theory as a unique conceptual frame and the technique of CI matrix dressing, a wide series of single-reference methods for the treatment of the ground state correlation are reviewed, compared, and sometimes improved. These methods range from independent excitation approximation (the very next step beyond MP2) to coupled cluster, going through the so-called electron pair approximations and the (SC)2CI formalism. A hierarchy of these methods can be established according to two criteria: These formulations in terms of diagonalizations of dressed CI matrices avoid convergence problems, but their main advantage is their flexibility, since they apply to multi-re…
Size-consistent self-consistent configuration interaction from a complete active space : Excited states
The self-consistent size consistent on a complete active space singly and doubly configuration interaction (SC)2CAS-SDCI method is applied to excited states. The (SC)2 correction is performed on a closed shell state, and the excited states are obtained by diagonalization of the dressed matrix. A theoretical justification of the transferability of the improvement concerning the dressing state to all roots of the matrix is presented. The method is tested by three tests on the spectrum of small molecules. sanchezm@uv.es ; nebot@uv.es
Vertical spectrum of the C2H 2+ system. An open shell (SC)2-CAS-SDCI study
The open shell (SC)(2)-CAS-SDCI method along with a basis set of atomic natural orbitals (ANO) has been applied for calculating the main ionization potentials of acetylene, as well as the manifold of excited states of the different symmetries up to 32 eV. In this method, the single and double excitations of a CAS space are generated and the corresponding CI matrix is corrected by means of the (SC)(2) procedure that cancels the size-extensivity error and adds some high order contributions. The mean absolute error for the outer-valence X (2)Pi(u)(1pi(u) (-1)), A (2)Sigma(g) (+)(3sigma(g) (-1)), and B (2)Sigma(u) (+)(2sigma(u) (-1)) states, and the inner-valence C (2)Sigma(g) (+)(2sigma(g) (-1…
Multi-scale multireference configuration interaction calculations for large systems using localized orbitals: Partition in zones
A new multireference configuration interaction method using localised orbitals is proposed, in which a molecular system is divided into regions of unequal importance. The advantage of dealing with local orbitals, i.e., the possibility to neglect long range interaction is enhanced. Indeed, while in the zone of the molecule where the important phenomena occur, the interaction cut off may be as small as necessary to get relevant results, in the most part of the system it can be taken rather large, so that results of good quality may be obtained at a lower cost. The method is tested on several systems. In one of them, the definition of the various regions is not based on topological considerati…
Ab initio study of the C60+Na system
Abstract In this work we present the first CAS-CI calculation of the potential-electronic curves for the lowest states of the C 60 +Na system using a set of local orbitals. These orbitals permit to select a small active space describing the ionic interaction between the C 60 and the Na atom. A binding energy of about 3 eV has been found, a value substantially larger than previous theoretical results.
Localized molecular orbitals for excited states of polyenals, polyendials, and polyenones
The work is focused on the generation of localized molecular orbitals for excited states. A recently developed a priori method based in a CAS-SCF–type algorithm is applied. The method generates directly localized orbitals and can be applied to multireference wavefunctions. A detailed description of the performance of the method as well as the locality of the MOs for the example of the singlet nπ* (CO) excited state is given. It is in general possible to obtain local orbitals for the doubly occupied and virtual valence orbitals. The partial delocalization of the π* (CO) orbital is discussed, as is the effect of the use of different CAS spaces. The systems under study are polyenals, polyendia…
Reducing CAS-SDCI space. Using selected spaces in configuration interaction calculations in an efficient way
A new method is presented, which allows an important reduction of the size of some Configuration Interaction (CI) matrices. Starting from a Complete Active Space (CAS), the numerous configurations that have a small weight in the CAS wave function are eliminated. When excited configurations (e.g., singly and doubly excited) are added to the reference space, the resulting MR-SDCI space is reduced in the same proportion as compared with the full CAS–SDCI. A set of active orbitals is chosen, but some selection of the most relevant excitations is performed because not all the possible excitations act as SDCI generators. Thanks to a new addressing technique, the computational time is drastically …
Molecular electric quadrupole moments calculated with matrix dressed SDCI
Abstract We have calculated the molecular electric quadrupole moment (MEQM) for the set of molecules N 2 , C 2 H 2 , CO, CO 2 , CS 2 , HF, and BH. We have used SR-SDCI and (SC) 2 -SR-SDCI methods and we have compared our results with high-level theoretical ones, including FCI values for HF and BH, and with experimental values. The calculated MEQM provides a test of the effect that the energy converged (SC) 2 dressing method brings to the SDCI wavefunctions. The results suggest that the (SC) 2 -SR-SDCI method can be a cost-effective and quite accurate method for the calculation of post-SCF effects on electric quadrupole moments.
Self‐consistent intermediate Hamiltonians : A coupled cluster type formulation of the singles and doubles configuration interaction matrix dressing
This paper presents a new self‐consistent dressing of a singles and doubles configuration interaction matrix which insures size‐consistency, separability into closed‐shell subsystems if localized molecular orbitals (MOs) are used, and which includes all fourth order corrections. This method yields, among several schemes, a reformulation of the coupled cluster method, including fully the cluster operators of single and double excitations, and partially those of the triples (Bartlett’s algorithm named CCSDT‐1a). Further improvement can be easily included by adding exclusion principle violating corrections. Since it leads to a matrix diagonalization, the method behaves correctly in case of nea…
The vertical spectrum of H2CO revisited: (SC)2-CI and CC calculations
The vertical electronic spectrum of formaldehyde has been studied by means of (SC)2-MR-SDCI and CCLR methods. Two basis sets of atomic natural orbitals (ANOs) complemented with a one-centre series of Rydberg orbitals were used. The first was taken from the CASPT2 study by Merchan, M., and Roos, B. O., 1995, Theoret. Chim. Acta, 92, 221, and may be described as C,O[4s3pld]/H[2slp] with a lslpld Rydberg series centred in the charge centroid of the 2B2 state of the cation. The second was a larger basis set that may be described as C,O[6s5p3d2f]/H[4s3p2d] + 3s3p3d in the same centre. The (SC)2 dressing may be applied efficiently to an MR-SDCI method and comparison with the dressed CAS-SDCI is s…
The problem of interoperability: A common data format for quantum chemistry codes
A common format for quantum chemistry (QC), enhancing code interoperability and communication between different programs, has been designed and implemented. An XML-based format, QC-ML, is presented for representing quantities such as geometry, basis set, and so on, while an HDF5-based format is presented for the storage of large binary data files. Some preliminary applications that use the format have been implemented and are also described. This activity was carried out within the COST in Chemistry D23 project “MetaChem,” in the Working Group “A meta-laboratory for code integration in ab initio methods.” © 2007 Wiley Periodicals, Inc. Int J Quantum Chem, 2007
Multistate active spaces from local CAS-SCF molecular orbitals: the photodissociation of HFCO as an example.
A recently developed algorithm to generate localized molecular orbitals (LMO) is applied to the study of excited states along a photodissociation process. The LMOs allow for the selection of a consistent complete active space (CAS) for the simultaneous description of all the electronic states involved in a multistate process on the basis of simple chemical criteria. The local nature of the orbitals is used to label them in a unique way that does not depend on the molecular geometry. The selection of the electronic configurations of interest for the set of target states on only the basis of the dominant excitations required by the simplest configuration interaction (CI) descriptions for both…