0000000000387593

AUTHOR

Rainer Akkermann

0000-0003-1583-9987

Resolving the transcriptional transitions associated with oligodendrocyte generation from adult neural stem cells by single cell sequencing

AbstractThe subventricular zone (SVZ) is the largest neurogenic niche in the adult forebrain. Notably, neural stem cells (NSCs) of the SVZ generate not only neurons, but also oligodendrocytes, the myelin-forming cells of the central nervous system. Transcriptomic studies have provided detailed knowledge of the molecular events that regulate neurogenesis, but little is understood about adult oligodendrogenesis from SVZ-NSCs. To address this, we performed in-depth single-cell transcriptomic analyses to resolve the major differences in neuronal and oligodendroglial lineages derived from the adult SVZ. A hallmark of adult oligodendrogenesis was the stage-specific expression of transcriptional m…

research product

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

research product