0000000000387776
AUTHOR
Patrick J. O'donnell
Electromagnetic transitions of heavy baryons in theSU(2Nf)⊗O(3)symmetry
We apply heavy quark symmetry to the radiative decays of heavy baryons. Even with this symmetry in place there are too many couplings to make a meaningful set of predictions. We show that if, in addition, light-diquark symmetries are applied, the number of electromagnetic couplings among S wave and P wave states as well as those between P wave to S wave transitions can be reduced significantly. Using this constituent quark model picture a number of predictions are made that will be testable in the near future.
Charmed baryon strong coupling constants in a light-front quark model
Light-Front quark model spin wave functions are employed to calculate the three independent couplings g_{\Sigma_c \Lambda_c \pi}, f_{\Lambda_{c1} \Sigma_c \pi} and f_{\Lambda^{*}_{c1} \Sigma_c \pi} of S-wave to S-wave and P-wave to S-wave one-pion transitions. It is found that g_{\Sigma_c \Lambda_c \pi}=6.81 MeV^{-1}, f_{\Lambda_{c1} \Sigma_c \pi}=1.16 and f_{\Lambda^{*}_{c1} \Sigma_c \pi}=0.96 . 10^{-4} MeV^{-2}. We also predict decay rates for specific strong transitions of charmed baryons.