0000000000388046
AUTHOR
Ewa Stachowska
Hyperfine structure measurements in the
Clouds of stable and unstable Eu+ isotopes have been confined in a Paul trap, each containing about 105 particles. In a microwave-optical double resonance experiment several hyperfine separations in the 4f7 6s 7S3 exited level have been measured with the experimental uncertainties ranging between 10-8 and 3×10-6. These experiments have confirmed that also in the case of an excited level with a large number of hyperfine or Zeeman sublevels the microwave-optical double resonance technique in a Paul trap can be useful for precise hyperfine structure investigation. The hyperfine coupling constants A and B have been determined for the isotopes 153Eu+, 151Eu+, 150Eu+ and 148Eu+. The results compl…
Ground-state hyperfine-structure measurements of unstableEu+isotopes in a Paul ion trap
Hyperfine separations in unstable ${\mathrm{Eu}}^{+}$ ions of mass 148, 149, and 150 have been measured in laser-microwave double-resonance experiments in a Paul ion trap. In spite of the small available quantities of the isotopes, the experimental uncertainties are of the order of ${10}^{\ensuremath{-}8}$ or below, which is of the same order as in earlier measurements on stable isotopes of ${\mathrm{Eu}}^{+}.$ Extensive second-order perturbation calculation is required to obtain coupling constants for magnetic-dipole $(A)$ and electric-quadrupole $(B)$ interactions. The uncertainties are a few times ${10}^{\ensuremath{-}7}$ for $A$ and ${10}^{\ensuremath{-}3}$ for $B.$ The experiments are …
Ion trap nuclear resonance on $\mathsf{^{151}Eu^ + }$
Laser-microwave double resonance techniques applied to a cloud of a natural mixture of Eu + isotopes confined in a Penning trap has been used to induce and detect nuclear Zeeman transitions. In spite of the complex level structure of Eu + and overlapping spectra from the two isotopes five different $\Delta m_I = 1$ transitions could be observed from which the nuclear magnetic moment can be derived. We obtain for 151 Eu + g I = 1.377 34(6) demonstrating the potential for high accuracy of the technique. The experiment can be considered as a feasibility test that precise spectroscopy data using the ion storage technique can be obtained of very complex ions and under unfavourable conditions.
Experimental and theoretical challenges for the trapped electron quantum computer
We discuss quantum information processing with trapped electrons. After recalling the operation principle of planar Penning traps we sketch the experimental conditions to load, cool and detect single electrons. Here we present a detailed investigation of a scalable scheme including feasibility studies and the analysis of all important elements, relevant for the experimental stage. On the theoretical side, we discuss different methods to couple electron qubits. We estimate the relevant qubit coherence times and draw implications for the experimental setting. A critical assessment of quantum information processing with trapped electrons is concluding the article.