0000000000388047
AUTHOR
K. Enders
Hyperfine structure measurements in the
Clouds of stable and unstable Eu+ isotopes have been confined in a Paul trap, each containing about 105 particles. In a microwave-optical double resonance experiment several hyperfine separations in the 4f7 6s 7S3 exited level have been measured with the experimental uncertainties ranging between 10-8 and 3×10-6. These experiments have confirmed that also in the case of an excited level with a large number of hyperfine or Zeeman sublevels the microwave-optical double resonance technique in a Paul trap can be useful for precise hyperfine structure investigation. The hyperfine coupling constants A and B have been determined for the isotopes 153Eu+, 151Eu+, 150Eu+ and 148Eu+. The results compl…
Ground-state hyperfine-structure measurements of unstableEu+isotopes in a Paul ion trap
Hyperfine separations in unstable ${\mathrm{Eu}}^{+}$ ions of mass 148, 149, and 150 have been measured in laser-microwave double-resonance experiments in a Paul ion trap. In spite of the small available quantities of the isotopes, the experimental uncertainties are of the order of ${10}^{\ensuremath{-}8}$ or below, which is of the same order as in earlier measurements on stable isotopes of ${\mathrm{Eu}}^{+}.$ Extensive second-order perturbation calculation is required to obtain coupling constants for magnetic-dipole $(A)$ and electric-quadrupole $(B)$ interactions. The uncertainties are a few times ${10}^{\ensuremath{-}7}$ for $A$ and ${10}^{\ensuremath{-}3}$ for $B.$ The experiments are …
Laser-microwave spectroscopy of the hyperfine structure of 9Be for the investigation of unstable Be isotopes
Abstract For an investigation concerning the nuclear magnetic moments and their distributions in the nuclei of 7,11Be, an experimental project using laser-microwave double resonance spectroscopy for trapped ions is under progress at INS. Laser cooled ion crystals consisting of a few 9Be+ ions were observed and the ground state hyperfine splitting of 9Be+ was measured with a precision of 10−5. Experiments on the unstable isotope 7Be have been started.
Isotope separation by nonlinear resonances in a Paul trap
Deviations from the ideal quadrupole potential in a Paul ion trap create nonlinear resonances at certain operating points inside the stability diagram, where in the absence of potential pertubations storing times are very long. In the presence of those pertubations, however, the ions are lost from the trap. Since these resonances are mass dependent and the mass resolution is of the order of 100 it can be used to separate isotopes of a given element by choosing suitable trap operating conditions. Experiments on a natural mixture of Eu+ ions of mass 151 and 153 show that in a simple way, by proper choice of the operating point, the ions can be completely separated and laser-induced optical sp…