0000000000388359

AUTHOR

Talia Flanagan

In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects.

This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the e…

research product

A survey on IVIVC/IVIVR development in the pharmaceutical industry – Past experience and current perspectives

The present work aimed to describe the current status of IVIVC/IVIVR development in the pharmaceutical industry, focusing on the use and perception of specific approaches as well as successful and failed case studies. Two questionnaires have been distributed to 13 EFPIA partners of the Oral Biopharmaceutics Tools Initiative and to the Pharmacokinetics Working Party of the European Medicines Agency in order to capture the perspectives and experiences of industry scientists and agency members, respectively. Responses from ten companies and three European Agencies were received between May 21st 2014 and January 19th 2016. The majority of the companies acknowledged the importance of IVIVC/IVIVR…

research product

IMI – Oral biopharmaceutics tools project – Evaluation of bottom-up PBPK prediction success part 4: Prediction accuracy and software comparisons with improved data and modelling strategies

Oral drug absorption is a complex process depending on many factors, including the physicochemical properties of the drug, formulation characteristics and their interplay with gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) models integrate all available information on gastro-intestinal system with drug and formulation data to predict oral drug absorption. The latter together with in vitro-in vivo extrapolation and other preclinical data on drug disposition can be used to predict plasma concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug development, an improvement in their utility for evaluating oral absorption i…

research product