0000000000388372

AUTHOR

Clive G. Wilson

showing 2 related works from this author

In vivo methods for drug absorption - comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for for…

2013

This review summarizes the current knowledge on anatomy and physiology of the human gastrointestinal tract in comparison with that of common laboratory animals (dog, pig, rat and mouse) with emphasis on in vivo methods for testing and prediction of oral dosage form performance. A wide range of factors and methods are considered in addition, such as imaging methods, perfusion models, models for predicting segmental/regional absorption, in vitro in vivo correlations as well as models to investigate the effects of excipients and the role of food on drug absorption. One goal of the authors was to clearly identify the gaps in today's knowledge in order to stimulate further work on refining the e…

Physiologically based pharmacokinetic modellingChemistry PharmaceuticalPharmaceutical ScienceExcipientAdministration OralComputational biologyPharmacologyPharmaceutical formulationModels BiologicalIntestinal absorptionDosage formBiopharmaceuticsExcipientsFood-Drug InteractionsIVIVCSpecies SpecificityIn vivomedicineAnimalsHumansPharmacokineticsPharmaceutical sciencesChemistryReproducibility of ResultsGastrointestinal TractIntestinal AbsorptionPharmaceutical PreparationsModels AnimalGastrointestinal Motilitymedicine.drugEuropean journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences
researchProduct

Oral biopharmaceutics tools – Time for a new initiative – An introduction to the IMI project OrBiTo

2013

OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharm…

Physiologically based pharmacokinetic modellingComputer scienceProcess (engineering)Chemistry Pharmaceuticalmedia_common.quotation_subjectAdministration OralPharmaceutical SciencePharmacologyModels BiologicalPermeabilityQuality by DesignBiopharmaceuticsAnimalsHumansComputer SimulationPharmacokineticsQuality (business)Product (category theory)Program Developmentmedia_commonDosage FormsActive ingredientbusiness.industryBiopharmaceuticsGastrointestinal TractEngineering managementIntestinal AbsorptionPharmaceutical PreparationsSolubilityNew product developmentbusinessEuropean Journal of Pharmaceutical Sciences
researchProduct