0000000000388421

AUTHOR

Bastian Gebauer

The factorization method for real elliptic problems

The Factorization Method localizes inclusions inside a body from mea- surements on its surface. Without a priori knowing the physical parameters inside the inclusions, the points belonging to them can be characterized using the range of an auxiliary operator. The method relies on a range characterization that relates the range of the auxiliary operator to the measurements and is only known for very particular applications. In this work we develop a general framework for the method by considering sym- metric and coercive operators between abstract Hilbert spaces. We show that the important range characterization holds if the difference between the inclusions and the background medium satisfi…

research product

A sampling method for detecting buried objects using electromagnetic scattering

We consider a simple (but fully three-dimensional) mathematical model for the electromagnetic exploration of buried, perfect electrically conducting objects within the soil underground. Moving an electric device parallel to the ground at constant height in order to generate a magnetic field, we measure the induced magnetic field within the device, and factor the underlying mathematics into a product of three operations which correspond to the primary excitation, some kind of reflection on the surface of the buried object(s) and the corresponding secondary excitation, respectively. Using this factorization we are able to give a justification of the so-called sampling method from inverse scat…

research product

Localized potentials in electrical impedance tomography

In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general L ∞ -conductivities in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderon problem with partial data. We also show how to con- struct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical imp…

research product

Sampling methods for low-frequency electromagnetic imaging

For the detection of hidden objects by low-frequency electromagnetic imaging the linear sampling method works remarkably well despite the fact that the rigorous mathematical justification is still incomplete. In this work, we give an explanation for this good performance by showing that in the low-frequency limit the measurement operator fulfils the assumptions for the fully justified variant of the linear sampling method, the so-called factorization method. We also show how the method has to be modified in the physically relevant case of electromagnetic imaging with divergence-free currents. We present numerical results to illustrate our findings, and to show that similar performance can b…

research product