0000000000388658

AUTHOR

Bernard Cailleteau

showing 2 related works from this author

Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobac…

2007

International audience; Pathogen attack represents a major problem for viticulture and for agriculture in general. At present, the use of phytochemicals is more and more restrictive, and therefore it is becoming essential to control disease by having a thorough knowledge of resistance mechanisms. The present work focused on the trans-regulatory proteins potentially involved in the control of the plant defence response, the WRKY proteins. A full-length cDNA, designated VvWRKY1, was isolated from a grape berry library (Vitis vinifera L. cv. Cabernet Sauvignon). It encodes a polypeptide of 151 amino acids whose structure is characteristic of group IIc WRKY proteins. VvWRKY1 gene expression in …

0106 biological sciencesGénomique et Biotechnologie des FruitsPhysiologyTransgenesalicylic acid[SDV]Life Sciences [q-bio]Amino Acid MotifsMolecular Sequence DataWRKY transcription factorPlant ScienceGenetically modified cropsBiology01 natural sciences03 medical and health scienceschemistry.chemical_compoundplant resistance to pathogensGene Expression Regulation PlantComplementary DNABotanyGene expressionTobacco[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyVitisCloning MolecularPathogen030304 developmental biologyPlant Proteins2. Zero hungerGeneticschemistry.chemical_classification0303 health sciencesBase SequenceFungifood and beveragesPlants Genetically ModifiedWRKY protein domainImmunity InnateAmino acid[SDV.BV.PEP]Life Sciences [q-bio]/Vegetal Biology/Phytopathology and phytopharmacychemistrySalicylic acid010606 plant biology & botanyTranscription Factors
researchProduct

NADPH Oxidase-Mediated Reactive Oxygen Species Production: Subcellular Localization and Reassessment of Its Role in Plant Defense

2009

International audience; Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membran…

0106 biological sciencesPhysiologyBiology01 natural sciencesDNA AntisenseFungal Proteins03 medical and health sciencesMicroscopy Electron TransmissionNtrbohDTobaccoGene expressionNADPHPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCells CulturedPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesOxidase testNADPH oxidaseHydrogen PeroxideGeneral MedicinePlants Genetically ModifiedSubcellular localizationElicitorPlant LeavesEnzymechemistryBiochemistrybiology.proteinREACTIVE OXYGEN SPECIES (ROS)OxidoreductasesReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions®
researchProduct