0000000000388670
AUTHOR
Stefan Schneider-hirsch
The murine nuclear orphan receptor GCNF is expressed in the XY body of primary spermatocytes
AbstractWe have studied the expression of the nuclear orphan receptor GCNF (germ cell nuclear factor) on the mRNA and protein level in pubertal and adult mouse testes. We show by Northern and Western blot analyses and by in situ hybridization that GCNF is expressed in spermatocytes and round spermatids of adult mouse testis suggesting that GCNF may be a transcriptional regulator of spermatogenesis. Since the GCNF protein is accumulated in the XY body of late pachytene spermatocytes, it may be involved in transcriptional inactivation of sex chromosomes.
Neuronal Cell Nuclear Factor. A Nuclear Receptor Possibly Involved in the Control of Neurogenesis and Neuronal Differentiation
We have cloned from a cDNA library of neuronal derivatives of retinoic-acid-induced embryonic carcinoma cells a nuclear receptor that may be involved in the control of late neurogenesis and early neuronal differentiation. The receptor which is practically identical in sequence with germ cell nuclear factor, has been designated neuronal cell nuclear factor (NCNF). NCNF is exclusively expressed in the neuronal derivatives of PCC7-Mz1 cells, with the expression beginning within hours of exposure to retinoic acid. In the developing mouse brain, NCNF is expressed in the marginal zones of the neuroepithelium which are known to contain young postmitotic neurons. NCNF binds to the DRO sequence ther…
Cloning of the human NCNF gene.
We have cloned from a cDNA library of human testis tissue the human homologue to the mouse nuclear orphan receptor NCNF (neuronal cell nuclear factor). The open reading frame encodes a protein of 480 amino acids, the sequence of which (EMBL accession no. X99975) is 98.3% identical to the mouse homologue. Northern blot analysis of adult human tissues revealed a broad pattern of tissue expression. Similar to NCNF expression in mouse testis, two transcript forms of the single copy gene are expressed in human tissues. The two transcript forms which differ only in their 3'UTR, result in human from differential polyadenylation, in mouse from alternative splicing. Based on the high level of sequen…