0000000000388671

AUTHOR

Justyna B. Mocko

showing 3 related works from this author

Novel imine antioxidants at low nanomolar concentrations protect dopaminergic cells from oxidative neurotoxicity.

2009

Strong evidence indicates that oxidative stress may be causally involved in the pathogenesis of Parkinson's disease. We have employed human dopaminergic neuroblastoma cells and rat primary mesencephalic neurons to assess the protective potential of three novel bisarylimine antioxidants on dopaminergic cell death induced by complex I inhibition or glutathione depletion. We have found that exceptionally low concentrations (EC(50) values approximately 20 nM) of these compounds (iminostilbene, phenothiazine, and phenoxazine) exhibited strong protective effects against the toxicities of MPP(+), rotenone, and l-buthionine sulfoximine. Investigating intracellular glutathione levels, it was found t…

Antioxidantmedicine.medical_treatmentDopamineGlutathione reductaseNeurotoxinsBiologymedicine.disease_causeProtein oxidationBiochemistryAntioxidantsLipid peroxidationRats Sprague-DawleyCellular and Molecular Neurosciencechemistry.chemical_compoundCell Line TumormedicineAnimalsHumansCells CulturedMembrane Potential MitochondrialCell DeathDose-Response Relationship DrugNeurotoxicityParkinson DiseaseRotenoneGlutathionemedicine.diseaseGlutathioneMitochondriaRatsSubstantia NigraOxidative StressNeuroprotective AgentschemistryBiochemistryElectron Transport Chain Complex ProteinsCytoprotectionNerve DegenerationIminesOxidation-ReductionOxidative stressJournal of neurochemistry
researchProduct

Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson's disease

2010

Oxidative stress is involved in the pathogenesis of various neurodegenerative disorders, conventional antioxidant strategies have yet been of limited success. We have employed transgenic Caenorhabditis elegans expressing DsRed2 in dopaminergic neurons and CFP pan-neuronally, to characterize in larval and adult animals the effects of rotenone and 1-methyl-4-phenyl-pyridinium (MPP(+)) on the dopaminergic system. Investigating the antioxidant phenothiazine and different derived antipsychotic drugs, it was found that free phenothiazine exerted strong neuroprotection at the cellular level and resulted in a better performance in behavioral assays, whereas apomorphine and other dopamine agonists o…

InsecticidesApomorphineChlorpromazineDopamineBiologyPharmacologyNeuroprotectionlcsh:RC321-571Animals Genetically Modifiedchemistry.chemical_compoundAntipsychotic drugParkinsonian DisordersDopaminePhenothiazinesRotenonemedicineAnimalsHumansChlorpromazineCaenorhabditis eleganslcsh:Neurosciences. Biological psychiatry. Neuropsychiatrychemistry.chemical_classificationNeuronsDopaminergic neuronModels GeneticNeurodegenerationDopaminergicRotenonemedicine.diseaseDisease Models AnimalNeuroprotective AgentsNeurologychemistryDopamine receptorNerve DegenerationAntioxidantTricyclicmedicine.drugAntipsychotic AgentsNeurobiology of Disease
researchProduct

Comparative Evaluation of Biochemical Antioxidants as Neuroprotective Agents

2010

business.industryPhysiology (medical)MedicinePharmacologybusinessBiochemistryNeuroprotectionComparative evaluationFree Radical Biology and Medicine
researchProduct