0000000000388889

AUTHOR

B. J. Block

Multi-GPU Accelerated Multi-Spin Monte Carlo Simulations of the 2D Ising Model

A Modern Graphics Processing unit (GPU) is able to perform massively parallel scientific computations at low cost. We extend our implementation of the checkerboard algorithm for the two-dimensional Ising model [T. Preis et al., Journal of Chemical Physics 228 (2009) 4468–4477] in order to overcome the memory limitations of a single GPU which enables us to simulate significantly larger systems. Using multi-spin coding techniques, we are able to accelerate simulations on a single GPU by factors up to 35 compared to an optimized single Central Processor Unit (CPU) core implementation which employs multi-spin coding. By combining the Compute Unified Device Architecture (CUDA) with the Message P…

research product

Curvature dependence of surface free energy of liquid drops and bubbles: A simulation study.

We study the excess free energy due to phase coexistence of fluids by Monte Carlo simulations using successive umbrella sampling in finite LxLxL boxes with periodic boundary conditions. Both the vapor-liquid phase coexistence of a simple Lennard-Jones fluid and the coexistence between A-rich and B-rich phases of a symmetric binary (AB) Lennard-Jones mixture are studied, varying the density rho in the simple fluid or the relative concentration x_A of A in the binary mixture, respectively. The character of phase coexistence changes from a spherical droplet (or bubble) of the minority phase (near the coexistence curve) to a cylindrical droplet (or bubble) and finally (in the center of the misc…

research product

Anisotropic interfacial tension, contact angles, and line tensions: A graphics-processing-unit-based Monte Carlo study of the Ising model

As a generic example for crystals where the crystal-fluid interface tension depends on the orientation of the interface relative to the crystal lattice axes, the nearest neighbor Ising model on the simple cubic lattice is studied over a wide temperature range, both above and below the roughening transition temperature. Using a thin film geometry $L_x \times L_y \times L_z$ with periodic boundary conditions along the z-axis and two free $L_x \times L_y$ surfaces at which opposing surface fields $\pm H_{1}$ act, under conditions of partial wetting, a single planar interface inclined under a contact angle $\theta < \pi/2$ relative to the yz-plane is stabilized. In the y-direction, a generaliza…

research product