0000000000388901
AUTHOR
Bork Lühnsdorf
Cockayne syndrome: varied requirement of transcription-coupled nucleotide excision repair for the removal of three structurally different adducts from transcribed DNA.
Hereditary defects in the transcription-coupled nucleotide excision repair (TC-NER) pathway of damaged DNA cause severe neurodegenerative disease Cockayne syndrome (CS), however the origin and chemical nature of the underlying DNA damage had remained unknown. To find out, to which degree the structural properties of DNA lesions determine the extent of transcription arrest in human CS cells, we performed quantitative host cell reactivation analyses of expression vectors containing various synthetic adducts. We found that a single 3-(deoxyguanosin-N 2-yl)-2-acetylaminofluorene adduct (dG(N 2)-AAF) constitutes an unsurmountable obstacle to transcription in both CS-A and CS-B cells and is remov…
Excision of Uracil from Transcribed DNA Negatively Affects Gene Expression
Uracil is an unavoidable aberrant base in DNA, the repair of which takes place by a highly efficient base excision repair mechanism. The removal of uracil from the genome requires a succession of intermediate products, including an abasic site and a single strand break, before the original DNA structure can be reconstituted. These repair intermediates are harmful for DNA replication and also interfere with transcription under cell-free conditions. However, their relevance for cellular transcription has not been proved. Here we investigated the influence of uracil incorporated into a reporter vector on gene expression in human cells. The expression constructs contained a single uracil opposi…
Generation of reporter plasmids containing defined base modifications in the DNA strand of choice
Physiological effects of DNA bases other than A, G, C, and T as well as ways of removal of such bases from genomes are studied intensely. Methods for targeted insertion of modified bases into DNA, therefore, are highly demanded in the fields of DNA repair and epigenetics. This article describes efficient procedures for incorporation of modified DNA bases into a plasmid-borne enhanced green fluorescent protein (EGFP) gene. The procedure exploits excision of a stretch of 18 nt from either the transcribed or nontranscribed DNA strand with the help of the sequence-specific nicking endonucleases Nb.Bpu10I and Nt.Bpu10I. The excised single-stranded oligonucleotide is then swapped for a synthetic …
8-Oxo-7,8-dihydroguanine in DNA does not constitute a barrier to transcription, but is converted into transcription-blocking damage by OGG1.
The common DNA base modification 8-oxo-7,8-dihydroguanine (8-oxo-G) affects the efficiency and fidelity of transcription. We constructed plasmid substrates carrying single 8-oxo-G residues, specifically positioned in the transcribed or the non-transcribed DNA strands, to investigate their effects on the expression of an EGFP reporter gene and to explore the role of base excision repair in the mechanism of transcription inhibition. We report that 8-oxo-G does not directly block transcription in cells, since a single 8-oxo-G in the transcribed DNA strand did not reduce the EGFP expression levels in repair-deficient (OGG1-null) mouse embryonic fibroblast cell lines. Rather, inhibition of trans…