0000000000388976

AUTHOR

Francesco Della Coletta

showing 3 related works from this author

Origin of the spin Seebeck effect probed by temperature dependent measurements in Gd$_{3}$Fe$_{5}$O$_{12}$

2014

We probe the spin Seebeck effect in Gd$_{3}$Fe$_{5}$O$_{12}$/Pt hybrid structures as a function of temperature and observe two sign changes of the spin Seebeck signal with decreasing temperature. A first sign change occurs at a temperature close to the Gd$_{3}$Fe$_{5}$O$_{12}$ magnetic compensation point at around 280 K. There the spin Seebeck signal changes sign abruptly with unaltered amplitude, indicating that the spin current is mainly caused by the magnetic Fe sub-lattices, which reorient their directions at this temperature. A second, more gradual sign change takes place around the ordering temperature of the Gd sub-lattice in the range of 65-85 K, showing that the Gd magnetic sub-lat…

Condensed Matter - Mesoscale and Nanoscale PhysicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)FOS: Physical sciences
researchProduct

Origin of the spin Seebeck effect in compensated ferrimagnets

2016

Magnons are the elementary excitations of a magnetically ordered system. In ferromagnets, only a single band of low-energy magnons needs to be considered, but in ferrimagnets the situation is more complex owing to different magnetic sublattices involved. In this case, low lying optical modes exist that can affect the dynamical response. Here we show that the spin Seebeck effect (SSE) is sensitive to the complexities of the magnon spectrum. The SSE is caused by thermally excited spin dynamics that are converted to a voltage by the inverse spin Hall effect at the interface to a heavy metal contact. By investigating the temperature dependence of the SSE in the ferrimagnet gadolinium iron garne…

GadoliniumScienceGeneral Physics and Astronomychemistry.chemical_elementNanotechnology02 engineering and technology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticleCondensed Matter::Materials Sciencephysical sciencesFerrimagnetism0103 physical sciencesThermoelectric effectddc:530010306 general physicsSpin-½PhysicsMultidisciplinarycondensed matterCondensed matter physicsMagnonQGeneral Chemistry021001 nanoscience & nanotechnology3. Good healthFerromagnetismchemistryExcited stateSpin Hall effectCondensed Matter::Strongly Correlated Electrons0210 nano-technologyNature Communications
researchProduct

Magnon mode selective spin transport in compensated ferrimagnets

2017

We investigate the generation of magnonic thermal spin currents and their mode selective spin transport across interfaces in insulating, compensated ferrimagnet/normal metal bilayer systems. The spin Seebeck effect signal exhibits a non-monotonic temperature dependence with two sign changes of the detected voltage signals. Using different ferrimagnetic garnets, we demonstrate the universality of the observed complex temperature dependence of the spin Seebeck effect. To understand its origin, we systematically vary the interface between the ferrimagnetic garnet and the metallic layer, and by using different metal layers we establish that interface effects play a dominating role. They do not …

Materials scienceFOS: Physical sciencesBioengineering02 engineering and technology01 natural sciencesMetalCondensed Matter::Materials ScienceFerrimagnetism0103 physical sciencesThermoelectric effectThermalGeneral Materials Science010306 general physicsCondensed Matter - Materials ScienceCondensed matter physicsSpin polarizationMechanical EngineeringMagnonBilayerMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter Physicsvisual_artvisual_art.visual_art_mediumCondensed Matter::Strongly Correlated Electrons0210 nano-technologyVoltage
researchProduct