0000000000389556

AUTHOR

A Ivanov

showing 5 related works from this author

A global experiment on motivating social distancing during the COVID-19 pandemic

2022

Significance\ud \ud Communicating in ways that motivate engagement in social distancing remains a critical global public health priority during the COVID-19 pandemic. This study tested motivational qualities of messages about social distancing (those that promoted choice and agency vs. those that were forceful and shaming) in 25,718 people in 89 countries. The autonomy-supportive message decreased feelings of defying social distancing recommendations relative to the controlling message, and the controlling message increased controlled motivation, a less effective form of motivation, relative to no message. Message type did not impact intentions to socially distance, but people’s existing mo…

behavior changeCoronavirus disease 2019 (COVID-19)230 Affective NeuroscienceINTENTIONSL400self-determination theoryPhysical DistancingSocial SciencesIntention:Ciências Sociais::Psicologia [Domínio/Área Científica]FATIGUEmotivationPARENTAL PROHIBITIONSDG 3 - Good Health and Well-beingPandemicHumanshealth communicationMESSAGESSociologyPandemicsMETAANALYSISbehavior change ; motivation ; health communication ; COVID-19 ; self-determination theoryBehaviour Change and Well-beingMultidisciplinarybusiness.industrySocial distanceCOVID-19Public relationsbehavior change; motivation; health communication; COVID-19; self-determination theoryCOVID-19; behavior change; health communication; motivation; self-determination theory; Humans; Intention; COVID-19; Motivation; Pandemics; Physical Distancing/dk/atira/pure/sustainabledevelopmentgoals/good_health_and_well_beingINTERNALIZATIONbusinessBEHAVIOR
researchProduct

Higgs boson studies at the Tevatron

2013

We combine searches by the CDF and D0 Collaborations for the standard model Higgs boson with mass in the range 90-200 GeV/c2 produced in the gluon-gluon fusion, WH, ZH, tt̄H, and vector boson fusion processes, and decaying in the H→bb̄, H→W+W-, H→ZZ, H→τ+τ-, and H→γγ modes. The data correspond to integrated luminosities of up to 10 fb-1 and were collected at the Fermilab Tevatron in pp̄ collisions at √s=1.96 TeV. The searches are also interpreted in the context of fermiophobic and fourth generation models. We observe a significant excess of events in the mass range between 115 and 140 GeV/c2. The local significance corresponds to 3.0 standard deviations at mH=125 GeV/c2, consistent with the…

FERMILAB TEVATRON COLLIDERNuclear and High Energy PhysicsParticle physicsproton antiproton collisions; FERMILAB TEVATRON COLLIDER; Standard Model Higgs boson; BROKEN SYMMETRIESSTANDARD MODELP(P)OVER-BAR COLLISIONSTevatronFOS: Physical sciencesContext (language use)ATLAS DETECTORddc:500.2Standard Model Higgs boson7. Clean energy01 natural sciencesStandard ModelVector bosonHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)SEARCH0103 physical sciencesBibliography[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]BROKEN SYMMETRIESFermilab010306 general physicsPhysicsHIGGS BOSONB-JET IDENTIFICATIONLarge Hadron ColliderPP COLLISIONS010308 nuclear & particles physics4. EducationHigh Energy Physics::PhenomenologyROOT-S=1.96 TEVPARTON DISTRIBUTIONSExperimental High Energy PhysicsHiggs bosonproton antiproton collisionsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGSYMMETRIESCDFB-JET IDENTIFICATION; STANDARD MODEL; ATLAS DETECTOR; PP COLLISIONS; P(P)OVER-BAR COLLISIONS; PARTON DISTRIBUTIONS; ROOT-S=1.96 TEV; SEARCH; LHC; SYMMETRIESHigh Energy Physics::ExperimentLHC
researchProduct

Search for Low-Mass Dark-Sector Higgs Bosons

2012

See paper for full list of authors - 7 pages, 5 postscript figures, submitted to Phys. Rev. Lett; Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb-1 of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.

Particle physicslow-mass HiggHigh Energy Physics::LatticeGeneral Physics and AstronomyElementary particleAstrophysics::Cosmology and Extragalactic Astrophysicslow-mass Higgs01 natural sciencesHiggs Boson search; low-mass Higgs; BaBar detector at SLACPACS: 14.80.Ec 12.60.-i 95.35.+dStandard ModelVector bosonNuclear physicshiggssymbols.namesake0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsBosonPhysicsCondensed Matter::Quantum GasesGauge boson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyBABAR detectorHEPHiggs field[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]BaBarHiggs Boson searchsymbolsHiggs bosonHigh Energy Physics::ExperimentBaBar detector at SLACHiggs mechanism
researchProduct

ALICE: Physics performance report, volume II

2006

ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. It currently involves more than 900 physicists and senior engineers, from both the nuclear and high-energy physics sectors, from over 90 institutions in about 30 countries. The ALICE detector is designed to cope with the highest particle multiplicities above those anticipated for Pb-Pb collisions (dN(ch)/dy up to 8000) and it will be operational at the start-up of the LHC. In addition to heavy systems, the ALICE Collaboration will study collisions of lower-mass ions, which are a means of varying the energy density, …

PhysicsParticle physicsNuclear and High Energy PhysicsLarge Hadron Collider010308 nuclear & particles physicsPhysicsDetectorMonte Carlo methodObservable7. Clean energy01 natural sciencesParticle identificationNuclear physics0103 physical sciencesALICE (propellant)010306 general physicsNuclear ExperimentALICE; physics; performance; detector; CERN; QGP; LHCEvent (particle physics)Event reconstruction
researchProduct

Combination of measurements of the top-quark pair production cross section from the Tevatron Collider

2014

We combine six measurements of the inclusive top-quark pair (tt̄) production cross section (σtt̄) from data collected with the CDF and D0 detectors at the Fermilab Tevatron with proton-antiproton collisions at s=1.96TeV. The data correspond to integrated luminosities of up to 8.8fb-1. We obtain a value of σtt̄=7.60±0.41pb for a top-quark mass of mt=172.5GeV. The contributions to the uncertainty are 0.20 pb from statistical sources, 0.29 pb from systematic sources, and 0.21 pb from the uncertainty on the integrated luminosity. The result is in good agreement with the standard model expectation of 7.35-0.33+0.28pb at next-to-next-to-leading order and next-to-next-to leading logarithms in pert…

Top quarkP(P)OVER-BAR COLLISIONSTevatron7. Clean energylaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)law[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFERMILABFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderPhysicsP(P)OVER-BAR COLLISIONS; ROOT-S=1.96 TEV; PARTON DISTRIBUTIONS; HADRON COLLIDERS; LEADING ORDER; T(T)OVER-BAR; DETECTOR; LHC; QCD; FERMILABPerturbative QCD3. Good healthROOT-S=1.96 TEVPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGLHCT(T)OVER-BARParticle physicsNuclear and High Energy PhysicsFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstronomy & AstrophysicsMASSNuclear physicsSEARCHColliderParticle PhysicsDETECTORAstrophysics::Galaxy AstrophysicsScience & Technologyhep-exLEADING ORDERHigh Energy Physics::PhenomenologyTop quarkQCDP(P)OVER-BAR COLLISIONS; T(T)OVER-BAR; DETECTOR; SEARCH; MASSPair productionPARTON DISTRIBUTIONSExperimental High Energy PhysicsCollider PhysicsCDFHigh Energy Physics::ExperimentParticle Physics; Collider Physics; Top quark
researchProduct