0000000000390095

AUTHOR

Amy L. Parachnowitsch

Global urban environmental change drives adaptation in white clover

Made available in DSpace on 2022-04-28T19:52:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2022-03-18 Urbanization transforms environments in ways that alter biological evolution. We examined whether urban environmental change drives parallel evolution by sampling 110,019 white clover plants from 6169 populations in 160 cities globally. Plants were assayed for a Mendelian antiherbivore defense that also affects tolerance to abiotic stressors. Urban-rural gradients were associated with the evolution of clines in defense in 47% of cities throughout the world. Variation in the strength of clines was explained by environmental changes in drought stress and vegetation cover that varied am…

research product

Covariation and phenotypic integration in chemical communication displays: biosynthetic constraints and eco-evolutionary implications

Chemical communication is ubiquitous. The identification of conserved structural elements in visual and acoustic communication is well established, but comparable information on chemical communication displays (CCDs) is lacking. We assessed the phenotypic integration of CCDs in a meta‐analysis to characterize patterns of covariation in CCDs and identified functional or biosynthetically constrained modules. Poorly integrated plant CCDs (i.e. low covariation between scent compounds) support the notion that plants often utilize one or few key compounds to repel antagonists or to attract pollinators and enemies of herbivores. Animal CCDs (mostly insect pheromones) were usually more integrated t…

research product