0000000000390303

AUTHOR

I. Ostrovskiy

Magnetic Monopole Search with the Full MoEDAL Trapping Detector in 13 TeV pp Collisions Interpreted in Photon-Fusion and Drell-Yan Production

MoEDAL is designed to identify new physics in the form of stable or pseudostable highly ionizing particles produced in high-energy Large Hadron Collider (LHC) collisions. Here we update our previous search for magnetic monopoles in Run 2 using the full trapping detector with almost four times more material and almost twice more integrated luminosity. For the first time at the LHC, the data were interpreted in terms of photon-fusion monopole direct production in addition to the Drell-Yan-like mechanism. The MoEDAL trapping detector, consisting of 794 kg of aluminum samples installed in the forward and lateral regions, was exposed to 4.0 fb$^{-1}$ of 13 TeV proton-proton collisions at the LHC…

research product

Search for magnetic monopoles with the MoEDAL forward trapping detector in 2.11 fb −1 of 13 TeV proton–proton collisions at the LHC

We update our previous search for trapped magnetic monopoles in LHC Run 2 using nearly six times more integrated luminosity and including additional models for the interpretation of the data. The MoEDAL forward trapping detector, comprising 222 kg of aluminium samples, was exposed to 2.11 fb−1 of 13 TeV proton–proton collisions near the LHCb interaction point and analysed by searching for induced persistent currents after passage through a superconducting magnetometer. Magnetic charges equal to the Dirac charge or above are excluded in all samples. The results are interpreted in Drell–Yan production models for monopoles with spins 0, 1/2 and 1: in addition to standard point-like couplings, …

research product

Measurement of the Spectral Shape of the β -Decay of Xe137 to the Ground State of Cs137 in EXO-200 and Comparison with Theory

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden nonunique β-decay transition ^{137}Xe(7/2^{-})→^{137}Cs(7/2^{+}). The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultralow background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal to background ratio of more than 99 to 1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden nonunique β-decay shape, this work constitut…

research product

First search for dyons with the full MoEDAL trapping detector in 13 TeV pp collisions

The MoEDAL trapping detector, consists of approximately 800 kg of aluminium volumes. It was exposed during Run-2 of the LHC program to 6.46 fb^-1 of 13 TeV proton-proton collisions at the LHCb interaction point. Evidence for dyons (particles with electric and magnetic charge) captured in the trapping detector was sought by passing the aluminium volumes comprising the detector through a SQUID magnetometer. The presence of a trapped dyon would be signalled by a persistent current induced in the SQUID magnetometer. On the basis of a Drell-Yan production model, we exclude dyons with a magnetic charge ranging up to 5 Dirac charges, and an electric charge up to 200 times the fundamental electric …

research product

Measurement of the Spectral Shape of the beta-decay of 137Xe to the Ground State of 137Cs in EXO-200 and Comparison with Theory

We report on a comparison between the theoretically predicted and experimentally measured spectra of the first-forbidden non-unique $\beta$-decay transition $^{137}\textrm{Xe}(7/2^-)\to\,^{137}\textrm{Cs}(7/2^+)$. The experimental data were acquired by the EXO-200 experiment during a deployment of an AmBe neutron source. The ultra-low background environment of EXO-200, together with dedicated source deployment and analysis procedures, allowed for collection of a pure sample of the decays, with an estimated signal-to-background ratio of more than 99-to-1 in the energy range from 1075 to 4175 keV. In addition to providing a rare and accurate measurement of the first-forbidden non-unique $\bet…

research product