0000000000390346
AUTHOR
Kirsten Ochs
Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex−, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models
O6-Methylguanine (O6-MeG) is induced in DNA by methylating environmental carcinogens and various cytostatic drugs. It is repaired by O6-methylguanine-DNA methyltransferase (MGMT). If not repaired prior to replication, the lesion generates gene mutations and leads to cell death, sister chromatid exchanges (SCEs), chromosomal aberrations and malignant transformation. To address the question of how O6-MeG is transformed into genotoxic effects, isogenic Chinese hamster cell lines either not expressing MGMT (phenotypically Mex-), expressing MGMT (Mex+) or exhibiting the tolerance phenotype (Mex-, methylation resistant) were compared as to their clastogenic response. Mex- cells were more sensitiv…
BER, MGMT, and MMR in defense against alkylation-induced genotoxicity and apoptosis
Methylating carcinogens and cytostatic drugs induce different methylation products in DNA. In cells not expressing the repair protein MGMT or expressing it at a low level, O6-methylguanine is the major genotoxic, recombinogenic, and apoptotic lesion. Genotoxicity and apoptosis triggered by O6-methylguanine require mismatch repair (MMR). In cells expressing O6-methylguanine-DNA methyl transferase (MGMT) at a high level or for agents producing low amounts of O6-methylguanine, N-alkylations become the major genotoxic lesions. N-Alkylations are repaired by base excision repair (BER). In mammalian cells, naturally occurring mutants of BER have not been detected, which points to the importance of…
Transgenic systems in studies on genotoxicity of alkylating agents: critical lesions, thresholds and defense mechanisms
Abstract Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also…