Predicting drug-induced cholestasis: preclinical models.
In almost 50% of patients with drug-induced liver injury (DILI), the bile flow from the liver to the duodenum is impaired, a condition known as cholestasis. However, this toxic response only appears in a small percentage of the treated patients (idiosyncrasy). Prediction of drug-induced cholestasis (DIC) is challenging and emerges as a safety issue that requires attention by professionals in clinical practice, regulatory authorities, pharmaceutical companies, and research institutions. Area covered: The current synopsis focuses on the state-of-the-art in preclinical models for cholestatic DILI prediction. These models differ in their goal, complexity, availability, and applicability, and ca…
New microRNA Biomarkers for Drug-Induced Steatosis and Their Potential to Predict the Contribution of Drugs to Non-alcoholic Fatty Liver Disease
Background and Aims: Drug-induced steatosis is a major reason for drug failure in clinical trials and post-marketing withdrawal; and therefore, predictive biomarkers are essential. These could be particularly relevant in non-alcoholic fatty liver disease (NAFLD), where most patients show features of the metabolic syndrome and are prescribed with combined chronic therapies, which can contribute to fatty liver. However, specific biomarkers to assess the contribution of drugs to NAFLD are lacking. We aimed to find microRNAs (miRNAs) responsive to steatotic drugs and to investigate if they could become circulating biomarkers for drug induced steatosis. Methods: Human HepG2 cells were treated wi…
Both cholestatic and steatotic drugs trigger extensive alterations in the mRNA level of biliary transporters in rat hepatocytes: Application to develop new predictive biomarkers for early drug development
Disruption of the vectorial bile acid transport in the liver is a key feature of cholestatic drugs, although many causal and mechanistic aspects are still unknown. The aim of the present study was to explore if cholestatic drugs can repress or induce the expression of hepatic transporters. To this end, sandwich-cultured rat hepatocytes were treated with cholestatic and non-cholestatic (steatotic, non-hepatotoxic, etc.) drugs and the mRNA expression of 10 uptake and efflux biliary transporters was measured. Results evidenced that all cholestatic drugs cause extensive alterations in the mRNA expression of most biliary transporters. Surprisingly, nearly all steatotic drugs also affected the ex…
A Novel MicroRNA Signature for Cholestatic Drugs in Human Hepatocytes and Its Translation into Novel Circulating Biomarkers for Drug-Induced Liver Injury Patients
AbstractDrug-induced liver injury (DILI) diagnosis and classification (hepatocellular, cholestatic, and mixed) relies on traditional clinical biomarkers (eg ALT and ALP), despite limitations such as extrahepatic interferences, narrow dynamic ranges, and low mechanistic value. microRNAs may be very useful for complementing traditional DILI biomarkers but most studies in this direction have considered only paracetamol poisoning. Thus the value of microRNAs (miRNAs) as biomarkers for idiosyncratic DILI has not yet been demonstrated. In this study, we first examined the effect of model cholestatic drugs on the human hepatocyte miRNome by RNAseq and RT-qPCR. Results demonstrated that chlorpromaz…
Non-invasive prediction of NAFLD severity: a comprehensive, independent validation of previously postulated serum microRNA biomarkers
AbstractLiver biopsy is currently the only reliable method to establish nonalcoholic fatty liver disease (NAFLD) severity. However, this technique is invasive and occasionally associated with severe complications. Thus, non-invasive diagnostic markers for NAFLD are needed. Former studies have postulated 18 different serum microRNA biomarkers with altered levels in NAFLD patients. In the present study, we have re-examined the predictive value of these serum microRNAs and found that 9 of them (miR-34a, -192, -27b, -122, -22, -21, -197, -30c and -16) associated to NAFLD severity in our independent cohort. Moreover, miR-192, -27b, -22, -197 and -30c appeared specific for NAFLD, when compared wi…
Activation of the Constitutive Androstane Receptor Inhibits Leukocyte Adhesiveness to Dysfunctional Endothelium
Leukocyte cell recruitment into the vascular subendothelium constitutes an early event in the atherogenic process. As the effect of the constitutive androstane receptor (CAR) on leukocyte recruitment and endothelial dysfunction is poorly understood, this study investigated whether the role of CAR activation can affect this response and the underlying mechanisms involved. Under physiological flow conditions, TNFα-induced endothelial adhesion of human leukocyte cells was concentration-dependently inhibited by preincubation of human umbilical arterial endothelial cells with the selective human CAR ligand CITCO. CAR agonism also prevented TNFα induced VCAM-1 expression, as well as MCP-1/CCL-2 a…