0000000000390982

AUTHOR

David Marzocca

0000-0002-4353-1544

showing 3 related works from this author

Nonzero |U_e3| from charged lepton corrections and the atmospheric neutrino mixing angle

2013

After the successful determination of the reactor neutrino mixing angle theta(13) not equal 0.16 not equal 0, a new feature suggested by the current neutrino oscillation data is a sizeable deviation of the atmospheric neutrino mixing angle theta(23) from pi/4. Using the fact that the neutrino mixing matrix U = (UeU nu)-U-dagger, where U-e and U-nu result from the diagonalisation of the charged lepton and neutrino mass matrices, and assuming that U-nu has a i) bimaximal (BM), H) tri-bimaximal (TBM) form, or else Hi) corresponds to the conservation of the lepton charge L' = L-e - L mu - L-tau (LC), we investigate quantitatively what are the minimal forms of U-e, in terms of angles and phases …

NEUTRINO MIXING CP VIOLATION CHOOZ ANGLE ATMOSPHERIC NEUTRINO MIXING ANGLE CHERGED LEPTON CORRECTIONSNuclear and High Energy PhysicsParticle physicsSolar neutrinoCHOOZ ANGLEPontecorvo–Maki–Nakagawa–Sakata matrixInverseFOS: Physical sciencesType (model theory)7. Clean energy01 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)CHERGED LEPTON CORRECTIONS0103 physical sciencesNeutrino Physics010306 general physicsNeutrino oscillationPhysics010308 nuclear & particles physicsATMOSPHERIC NEUTRINO MIXING ANGLENEUTRINO MIXINGSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - PhenomenologyCP violationCP violationCP VIOLATIONNeutrinoLepton
researchProduct

Electroweak Higgs production with HiggsPO at NLO QCD

2017

We present the HiggsPO UFO model for Monte Carlo event generation of electroweak $VH$ and VBF Higgs production processes at NLO in QCD in the formalism of Higgs pseudo-observables (PO). We illustrate the use of this tool by studying the QCD corrections, matched to a parton shower, for several benchmark points in the Higgs PO parameter space. We find that, while being sizable and thus important to be considered in realistic experimental analyses, the QCD higher-order corrections largely factorize. As an additional finding, based on the NLO results, we advocate to consider 2D distributions of the two-jet azimuthal-angle difference and the leading jet $p_T$ for new physics searches in VBF Higg…

Particle physicsPhysics and Astronomy (miscellaneous)530 PhysicsPhysics beyond the Standard ModelAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::LatticeMonte Carlo methodFOS: Physical scienceslcsh:Astrophysics10192 Physics InstituteParameter space01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Factorization0103 physical scienceslcsh:QB460-466lcsh:Nuclear and particle physics. Atomic energy. Radioactivity3101 Physics and Astronomy (miscellaneous)010306 general physicsParton showerEngineering (miscellaneous)PhysicsQuantum chromodynamics010308 nuclear & particles physicsElectroweak interactionHigh Energy Physics::PhenomenologyHigh Energy Physics - PhenomenologyHiggs bosonlcsh:QC770-798High Energy Physics::Experiment2201 Engineering (miscellaneous)
researchProduct

Adding pseudo-observables to the four-lepton experimentalist’s toolbox

2018

The "golden" channel, in which the newly-discovered Higgs boson decays to four leptons by means of intermediate vector bosons, is important for determining the properties of the Higgs boson and for searching for subtle new physics effects. Different approaches exist for parametrizing the relevant Higgs couplings in this channel; here we relate the use of pseudo-observables to methods based on specifying the most general amplitude or Lagrangian terms for the $HVV$ interactions. We also provide projections for sensitivity in this channel in several novel scenarios, illustrating the use of pseudo-observables, and analyze the role of kinematic distributions and (ratios of) rates in such $H\to4\…

Nuclear and High Energy PhysicsParticle physicsHiggs PhysicsPhysics beyond the Standard ModelFOS: Physical sciencesKinematicsQC770-79801 natural sciencesHigh Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivity0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivitySensitivity (control systems)010306 general physicsHiggs Physics ; Beyond Standard ModelParticle Physics - PhenomenologyPhysics010308 nuclear & particles physicsComputer Science::Information RetrievalHigh Energy Physics::PhenomenologyObservablehep-ph3. Good healthHigh Energy Physics - PhenomenologyAmplitudeBeyond Standard ModelHiggs bosonlcsh:QC770-798LeptonCommunication channelJournal of High Energy Physics
researchProduct