0000000000391261

AUTHOR

Günter Fritzsch

Complement pore genesis observed in erythrocyte membranes by fluorescence microscopic single-channel recording

The formation and opening of single complement pores could be directly observed in erythrocyte ghosts by confocal laser-scanning microscopy employing the recently introduced method of fluorescence microscopic single-channel recording. Resealed sheep erythrocyte ghosts were incubated with human complement. By limiting the concentration of C8, the eighth component of complement, the fraction of cells rendered permeable for the small polar fluorescent probe Lucifer Yellow was varied between 0.50 and 0.90. Under each condition the flux rate, k, of Lucifer Yellow was determined for a substantial number of ghosts. By analysing the sample population distribution of k the flux rate k1 of ghosts wit…

research product

Crystallization and preliminary X-ray analysis of native and selenomethionyl vinorine synthase from Rauvolfia serpentina.

Vinorine synthase (VS) is a central enzyme of the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure with significant sequence homology with VS is known. Crystals of VS and selenomethionyl-labelled VS from the medicinal plant Rauvolfia serpentina have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. VS crystals diffract to 2.8 Å and belong to space group P212121, with unit-cell parameters a = 82.3, b = 89.6, c = 136.2 Å. The selenomethionyl VS crystal was nearly isomorphous with the VS crystal.

research product

Crystallization and preliminary X-ray crystallographic analysis of strictosidine synthase from Rauvolfia: the first member of a novel enzyme family.

Strictosidine synthase is a central enzyme involved in the biosynthesis of almost all plant monoterpenoid indole alkaloids. Strictosidine synthase from Rauvolfia serpentina was heterologously expressed in Escherichia coli. Crystals of the purified recombinant enzyme have been obtained by the hanging-drop technique at 303 K with potassium sodium tartrate tetrahydrate as precipitant. The crystals belong to the space group R3 with cell dimensions of a=b=150.3 A and c=122.4 A. Under cryoconditions (120 K), the crystals diffract to about 2.95 A.

research product

Vinorine synthase from Rauvolfia: the first example of crystallization and preliminary X-ray diffraction analysis of an enzyme of the BAHD superfamily

Abstract Crystals of vinorine synthase (VS) from medicinal plant Rauvolfia serpentina expressed in Escherichia coli have been obtained by the hanging-drop technique at 305 K with ammonium sulfate and PEG 400 as precipitants. The enzyme is involved in the biosynthesis of the antiarrhythmic drug ajmaline and is a member of the BAHD superfamily of acyltransferases. So far, no three-dimensional structure of a member of this enzyme family is known. The crystals belong to the space group P 2 1 2 1 2 1 with cell dimensions of a =82.3 A, b =89.6 A and c =136.2 A. Under cryoconditions (120 K), a complete data set up to 2.8 A was collected at a synchrotron source.

research product

Crystallization and preliminary X-ray analysis of strictosidine synthase and its complex with the substrate tryptamine

Strictosidine synthase (STR1) is a central enzyme that participates in the biosynthesis of almost all plant monoterpenoid indole alkaloids. After heterologous expression in Escherichia coli, crystals of STR1 and its substrate complex with tryptamine were obtained by the hanging-drop technique at 302–304 K with potassium sodium tartrate tetrahydrate as precipitant. All crystals belong to space group R3. The native STR1 crystals diffract to 2.95 Å and have unit-cell parameters a = b = 150.3, c = 122.4 Å. The tryptamine complex crystals diffract to 2.38 Å, with unit-cell parameters a = b = 147.3, c = 122.3 Å.

research product

Mössbauer spectroscopy on the reaction center of Rhodopseudomonas viridis

Proteins called “reaction centers” (RC) can be isolated from many photosynthetic bacteria. They have one non-heme iron in a quinone acceptor region. The RC of Rhodopseudomonas viridis contains an additional tightly bound tetra-heme cytochrome c subunit. The electronic configuration of both cytochrome and the non-heme iron has been studied in the crystallized protein by Mossbauer spectroscopy at different redox potentials, pH-values, and with an addition of o-phenanthroline. At high potentials (Eh=+500mV) all heme irons are in the low spin Fe3+-state, and at low potential (Eh=−150mV) they are low spin Fe2+ with the same Mossbauer parameters for all hemes independent of pH. Redox titrations c…

research product

Crystal structure of vinorine synthase, the first representative of the BAHD superfamily.

Vinorine synthase is an acetyltransferase that occupies a central role in the biosynthesis of the antiarrhythmic monoterpenoid indole alkaloid ajmaline in the plant Rauvolfia. Vinorine synthase belongs to the benzylalcohol acetyl-, anthocyanin-O-hydroxy-cinnamoyl-, anthranilate-N-hydroxy-cinnamoyl/benzoyl-, deacetylvindoline acetyltransferase (BAHD) enzyme superfamily, members of which are involved in the biosynthesis of several important drugs, such as morphine, Taxol, or vindoline, a precursor of the anti-cancer drugs vincaleucoblastine and vincristine. The x-ray structure of vinorine synthase is described at 2.6-angstrom resolution. Despite low sequence identity, the two-domain structure…

research product