0000000000391278

AUTHOR

Jacques Simon

On global solutions of the Maxwell-Dirac equations

We prove, for the Maxwell-Dirac equations in 1+3 dimensions, that modified wave operators exist on a domain of small entire test functions of exponential type and that the Cauchy problem, inR+×R3, has a unique solution for each initial condition (att=0) which is in the image of the wave operator. The modification of the wave operator, which eliminates infrared divergences, is given by approximate solutions of the Hamilton-Jacobi equation, for a relativistic electron in an electromagnetic potential. The modified wave operator linearizes the Maxwell-Dirac equations to their linear part.

research product

The cauchy problem for non-linear Klein-Gordon equations

We consider in ℝ n+1,n≧2, the non-linear Klein-Gordon equation. We prove for such an equation that there is a neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the …

research product

THE MAXWELL–DIRAC EQUATIONS: ASYMPTOTIC COMPLETENESS AND THE INFRARED PROBLEM

In this article we present an announcement of results concerning: a) A solution to the Cauchy problem for the M-D equations, namely global existence, for small initial data at t = 0, of solutions for the M-D equations. b) Arguments from which asymptotic completeness for the M-D equations follows. c) Cohomological interpretation of the results in the spirit of nonlinear representation theory and its connection to the infrared tail of the electron in M-D classical field theory. The full detailed results will be published elsewhere.

research product

Initial Data for Non-Linear Evolution Equations and Differentiable Vectors of Group Representations

Regularity properties of non-linear Lie algebra representations are defined. These properties are satisfied in examples given by evolution equations. We prove that this regularity implies that the set of C ∞ vectors for the non-linear group representation obtained by integration of the Lie algebra representation coincide with the set of C ∞ vectors of the linear part (the order one term) of this group representation.

research product

Sur la 1-Cohomologie des Groupes de Lie Semi-Simples

International audience

research product