0000000000391437
AUTHOR
Jan-peter Kramb
Novel 3-Azaindolyl-4-arylmaleimides Exhibiting Potent Antiangiogenic Efficacy, Protein Kinase Inhibition, and Antiproliferative Activity
Tumor growth and metastasis are highly associated with the overexpression of protein kinases (PKs) regulating cell growth, apoptosis resistance, and prolonged cell survival. This study describes novel azaindolyl-maleimides with significant inhibition of PKs, such as VEGFR, FLT-3, and GSK-3β which are related to carcinogenesis. Furthermore, these compounds exhibit high kinase selectivity and potent inhibition of angiogenesis and cell proliferation, offering versatile options in cancer treatment strategies.
Investigations Concerning the Correlation of COX-1 Inhibitory and Hydroxyl Radical Scavenging Activity
The aim was to study the COX-1 inhibiting efficacy in context with hydroxyl radical scavenging properties of compounds bearing a carboxylic acid and ester function, respectively. In general, the acids are more potent radical scavengers than the corresponding esters but there is no clear correlation with their COX-1 inhibiting potencies. A feasible scavenging mechanism of carboxylic acids is discussed.
Moguntinones--new selective inhibitors for the treatment of human colorectal cancer.
Abstract 3-Indolyl and 3-azaindolyl-4-aryl maleimide derivatives, called moguntinones (MOG), have been selected for their ability to inhibit protein kinases associated with angiogenesis and induce apoptosis. Here, we characterize their mode of action and their potential clinical value in human colorectal cancer in vitro and in vivo. MOG-19 and MOG-13 were characterized in vitro using kinase, viability, and apoptosis assays in different human colon cancer (HT-29, HCT-116, Caco-2, and SW480) and normal colon cell lines (CCD-18Co, FHC, and HCoEpiC) alone or in combination with topoisomerase I inhibitors. Intracellular signaling pathways were analyzed by Western blotting. To determine their pot…
Vanillin Suppresses Metastatic Potential of Human Cancer Cells through PI3K Inhibition and Decreases Angiogenesis in Vivo
Vanillin, a food flavoring agent, has been shown to suppress cancer cell migration and metastasis in a mouse model, but its mechanism of action is unknown. In this report, we have examined the antimetastatic potential of vanillin and its structurally related compounds, vanillic acid, vanillyl alcohol, and apocynin on hepatocyte growth factor (HGF)-induced migration of human lung cancer cells by the Transwell assay. Vanillin and apocynin could inhibit cell migration, and both compounds selectively inhibited Akt phosphorylation of HGF signaling, without affecting phosphorylation of Met and Erk. Vanillin and apocynin could inhibit the enzymatic activity of phosphoinositide 3-kinase (PI3K), as …